Who will speak at Data Day Texas 2025

We are just now beginning to announce speakers. Are you doing something cool with data / ai and would like to share it at Data Day Texas? Send us a proposal. For the latest speaker / session updates, follow us on Linkedin.

Serg Masís (Raleigh-Durham-Chapel Hill)

Serg Masís (LinkedIn) is an IT software engineer, lecturer, and serial entrepreneur from Alsace, France. Currently, he's a Climate and Agronomic Data Scientist at Syngenta, a leading agribusiness company with a mission to improve global food security. Whether it pertains to leisure activities, plant diseases, or customer lifetime value, Serg is passionate about providing the often-missing link between data and decision-making. Serg is author of Interpretable Machine Learning with Python, now in its 2nd edition. Serg is also working on two upcoming titles: DIY AI: Step-By-Step Artificial Intelligence Projects for Makers and Hackers, and Building Responsible AI with Python. Learn more at Serg.ai.

Data Mesh Keynote
Jean-Georges Perrin (Albany, New York)

Jean-Georges Perrin (Wikipedia / LinkedIn) is an IT software engineer, lecturer, and serial entrepreneur from Alsace, France. The first French citizen to become an IBM Champion in 2009, he became a Lifetime IBM Champion in 2021, and a PayPal champion in 2024. Formerly Intelligence Platform Lead at PayPal, Jean-Georges is currently co-founder and Chief Innovation Officer at Abea Data. Jean-Georges is author of Spark in Action from Manning, and co-author of the upcoming Implementing Data Mesh from O'Reilly. Check out his thoughts on Data Mesh at Youtube.

Bill Inmon (Castle Rock, Colorado)

Bill Inmon (Wikipedia / LinkedIn) is an American computer scientist, recognized by many as the father of the data warehouse. Inmon wrote the first book, held the first conference, wrote the first column in a magazine and was the first to offer classes in data warehousing. Inmon created the accepted definition of what a data warehouse is - a subject oriented, nonvolatile, integrated, time variant collection of data in support of management's decisions. Bill is among the most prolific and well-known authors in the big data analysis, data warehousing and business intelligence arena. In addition to authoring more than 50 books and 650 articles, Bill has been a monthly columnist with the Business Intelligence Network, EIM Institute and Data Management Review. In 2007, Bill was named by Computerworld as one of the “Ten IT People Who Mattered in the Last 40 Years” of the computer profession.

Susan Shu Chang (Toronto) @susan_shuc

Susan Shu Chang (Linkedin) is currently Principal Data Scientist at Elastic. Originally trained in Economics, Susan is a 5x PyCon speaker, founder of Indie game studio Quill Game Studios and organizer of the 3700+ member Toronto Women's Data Group. Susan is also author of the upcoming O'Reilly book: Machine Learning Interviews. To learn how she finds time for all this and more, check out her personal site, susanshu.com, for her writings on focus optimization and daily routines.

Joe Reis (Salt Lake city)

Joe Reis (Linkedin), Co-Founder and CEO of Ternary Data, is a “recovering data scientist,” and a business-minded data nerd who’s worked in the data industry for 20 years. His responsibilities have ranged from statistical modeling, forecasting, machine learning, data engineering, data architecture, and everything else in between. Joe is co-host of the popular Monday Morning Data Chat (Spotify / Apple) as well as the newly launched Joe Reis Show (Apple / Spotify). Joe is also co-author of the bestselling O'Reilly book: Fundamentals of Data Engineering. Joe also teaches at the University of Utah as well as runs several meetups, including The Utah Data Engineering Meetup and SLC Python. When he’s not busy running a company, teaching, or creating content, Joe often finds himself DJing/making music, rock climbing, or trail running in the mountains around Salt Lake City, Utah.

Michelle Yi (SF Bay Area) @ YulleYi

Michelle Yi is a technology leader that specializes in machine learning and cloud computing. She has 15 years of experience in the technology industry, contributed to the original IBM Watson showcased on Jeopardy, and enjoys building and leading teams that develop and deploy AI solutions to solve real-world problems. Michelle is passionate about diversity, STEM education/careers for our minority communities, and serves both on the board of Women in Data and as an avid volunteer for Girls Who Code.

Amy Hodler (Kettle Falls, Washington) @amyhodler

Amy Hodler is an evangelist for graph analytics, network science, and responsible AI. Amy has decades of experience in emerging tech at companies such as Microsoft, Hewlett-Packard (HP), Hitachi IoT, Neo4j, Cray, and Relational AI. Amy has a love for science history and a fascination for complexity studies. Amy is the co-author of the O'Reilly book: Graph Algorithms, as well as co-author of an upcoming volume on the history of graph analytics.

Clair Sullivan (Breckenridge, Colorado) @ProfCJSullivan

Dr. Clair Sullivan is currently the Founder and CEO of Clair Sullivan and Associates, a company dedicated to providing data science consulting services. Prior to starting her company, she was the Director of Data Science at Vail Resorts leading a team of data scientists and machine learning engineers providing production models for operations and marketing. Previously she was a data science advocate at Neo4j, working to expand the community of data scientists and machine learning engineers using graphs to solve challenging problems. She received her doctorate degree in nuclear engineering from the University of Michigan in 2002. After that, she began her career in nuclear emergency response at Los Alamos National Laboratory where her research involved signal processing of spectroscopic data. She spent 4 years working in the federal government on related subjects and returned to academic research in 2012 as an assistant professor in the Department of Nuclear, Plasma, and Radiological Engineering at the University of Illinois at Urbana-Champaign. While there, her research focused on using machine learning to analyze the data from large sensor networks. Deciding to focus more on machine learning, she accepted a job at GitHub as a machine learning engineer while maintaining adjunct assistant professor status at the University of Illinois. In 2021 she joined Neo4j as a Graph Data Science Advocate. Additionally, she founded a company, La Neige Analytics, whose purpose is to provide data science expertise to the ski industry. She has authored 4 book chapters, over 20 peer-reviewed papers, and more than 30 conference papers. Dr. Sullivan was the recipient of the DARPA Young Faculty Award in 2014 and the American Nuclear Society's Mary J. Oestmann Professional Women's Achievement Award in 2015.

Jessica Talisman (Santa Cruz)

Jessica Talisman is a taxonomist, ontologist, information architect, and professional data wrangler. Over her 25 years of experience in the information & data architecture world, Jessica has worked in galleries, libraries, museums, the federal government, e-commerce, as tech and currently is the Information Architect for Sellers Platform at Amazon. Jessica holds a Master of Library and Information Science and Masters in Teaching. Check out Jessica’s recent interviews on the Monday Morning Data Chat and Discovering Data.

David Hughes (Seattle)

David Hughes is the Principal Graph Consultant for Graphable. He has 10 years of experience designing and building graph solutions which surface meaningful insights. His background includes clinical practice, medical research, software development, and cloud architecture. David has worked in healthcare and biotech within the intensive care, interventional radiology, oncology, cardiology, and proteomics domains. He enjoys endurance running, hiking, and spending time with his family in the outdoors when he is not enabling clients to have data epiphanies from their complex data.

Sean Robinson (Charlotte)

Sean Robinson is a versatile data scientist with several years of experience optimizing data processes and building intelligent data systems. Specifically, he specializes in the use of graph data science and Neo4j to abstract complex systems within a domain into a highly dimensional, interconnected knowledge graphs to uncover novel insights which would otherwise remain dormant in other data structures. Sean currently serves both as Lead Data Scientist at Graphable as well as creating and instructing new network science courses at the University of North Carolina at Charlotte’s Data Science graduate program where he instructs the next generation of data scientists on how to integrate graph data science into their toolkit.

Chris Tabb (London)

Chris Tabb, co-founder of LEIT DATA started his career in the Business Intelligence/Analytics domain 30 years ago. Beginning at Cognos in the 90’s working in the back office before becoming an expert in all their products, and leaving to become an independent BI consultant in 1998. Chris has followed the evolution of the analytics industry, working hands-on with all the technologies in the ecosystems: – Databases, ETL/ELT, BI/OLAP /Visualisation Tools, Big Data Technologies, Infrastructure On premises / Cloud across many vendors, some old some new. Recently with a focus on the Modern Data Stack Evolution Chris has started many movements with a focus on Business Value using a number of hashtags to raise awareness #bringbackdatamodelling / #bringbackdatamodeling #bringbackdocumention under the umbrella of the #meandatastreets that is focused on simplification of the Data Platform architecture and to focus on Business Value.

Matthew Housley (Salt Lake city)

Co-Founder / CTO of Ternary Data as well as fellow “Recovering Data Scientist,” , Matthew Housley is also a “Reformed Academic,” holding a PhD in Math and dual Masters degrees in both Math and Physics. It was only natural that he began his career in Academia as a Professor of Mathematics, before joining one of the largest e-commerce companies as a data scientist. Matt's STEM background in combination with his knack for teaching makes him a mastermind at overhauling processes, improving teamwork, and incorporating engineering best practices so that real value is delivered to companies. While making the journey from data scientist to data engineer, Matt began to focus more on data & cloud engineering, working extensively with Amazon Web Services, Google Cloud Platform, Containers, Apache Airflow and GPUs, among other technologies. Matt (or should we say, “Dr. Housley”) is an adjunct faculty member in the David Eccles School of Business at The University of Utah. Joe is co-host of the popular Monday Morning Data Chat (Spotify / Apple) and co-author of the bestselling O'Reilly book: Fundamentals of Data Engineering.