

TOWARDS A COST-OPTIMIZED LABELING STRATEGY

Jennifer Prendki, PhD

Data Day Conference – Austin, TX

January 25, 2020

ABOUT ALECTIO

- The first ML company dedicated to Data Curation
- Founded in 2019
- Mission:

Empower ML experts to build, train and retrain models with less data, and hence less resources.

OUTLINE

- The Big Data Labeling Crisis
- Understanding Class Separation
- Not All Data is Created Equal
- How to Best Spend your Labeling Budget
- Results and Conclusions

BIG DATA LABELING CRISIS

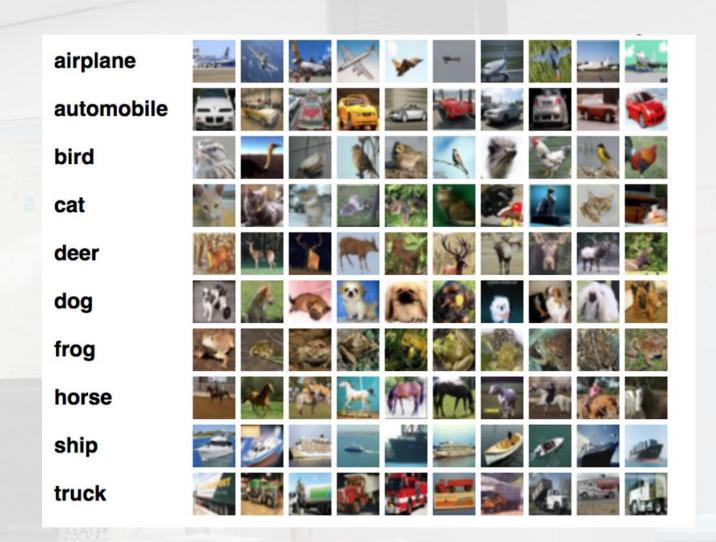
OUR 'TOY' CASE STUDY: CIFAR-10

The Data

- CIFAR-10
- 10 classes of everyday "objects"
- 50,000 training samples
- 10,000 testing samples

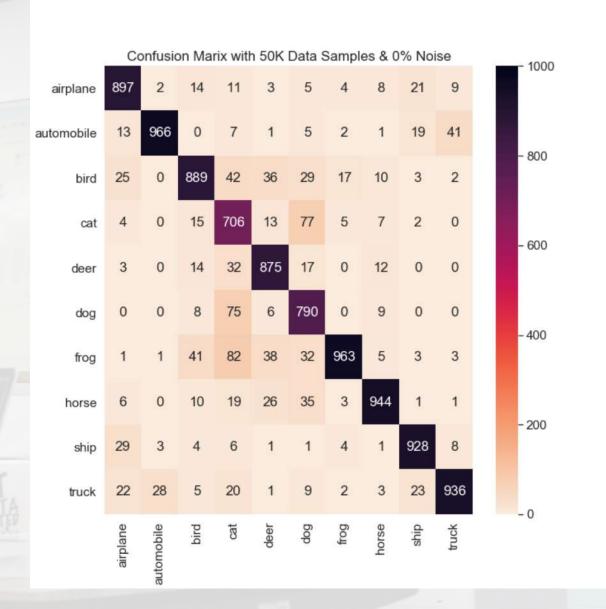
The Model

- Small CNN
 - 7 layers
 - 309,290 total parameters
 - 308,394 trainable parameters
 - 896 non-trainable parameters



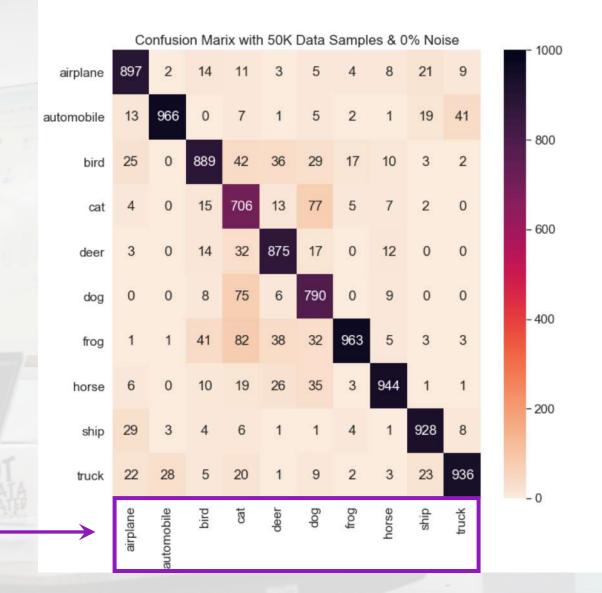
Results

Baseline accuracy: 89% (across all classes)



Results

Baseline accuracy: 89% (across all classes)

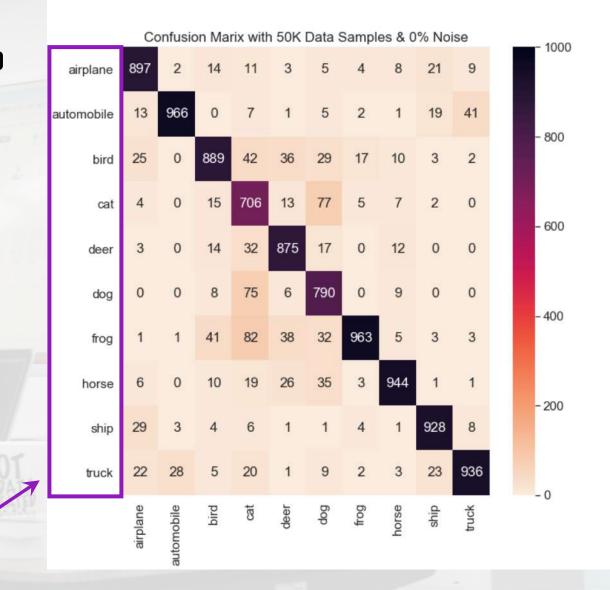


Ground truth

Results

Baseline accuracy: 89% (across all classes)

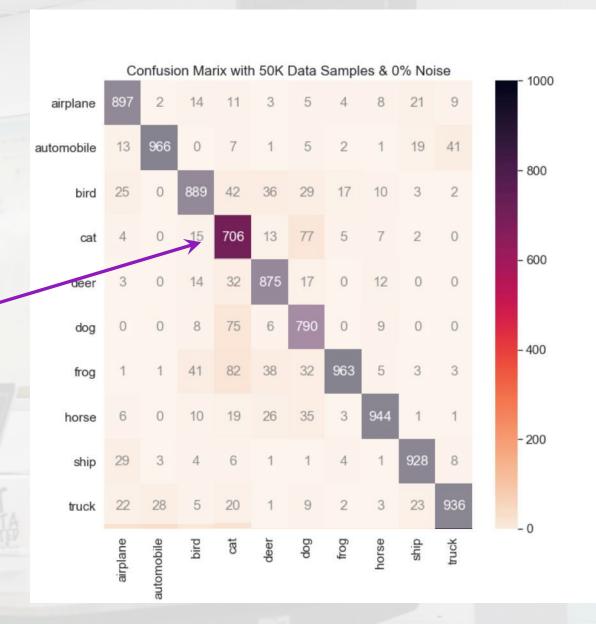
Predictions



Results

Baseline accuracy: 89% (across all classes)

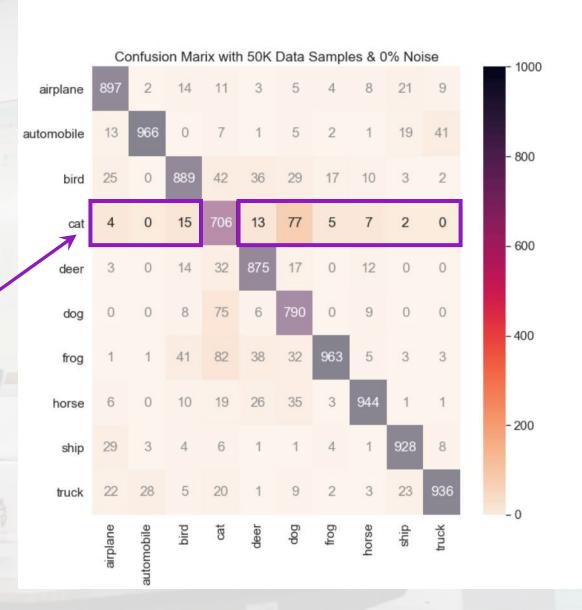
True Positive Rate
(x 1000)



Results

Baseline accuracy: 89% (across all classes)

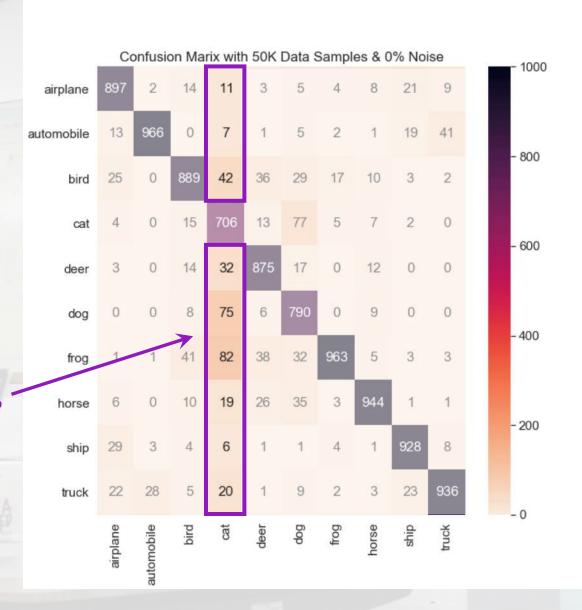
False Positive Rate



Results

Baseline accuracy: 89% (across all classes)

False Negative Rate

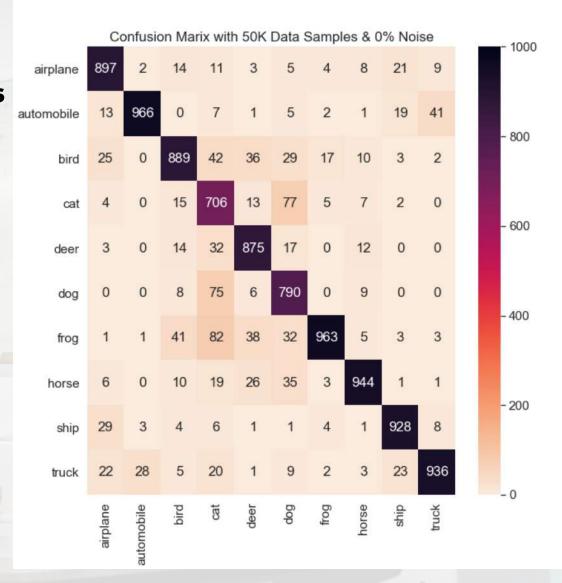


Results

Baseline accuracy: 89% (across all classes)

Results

- Baseline accuracy: 89% (across all classes)
- Accuracy varies dramatically across classes



Results

- Baseline accuracy: 89% (across all classes)
- Accuracy varies dramatically across classes

More details...

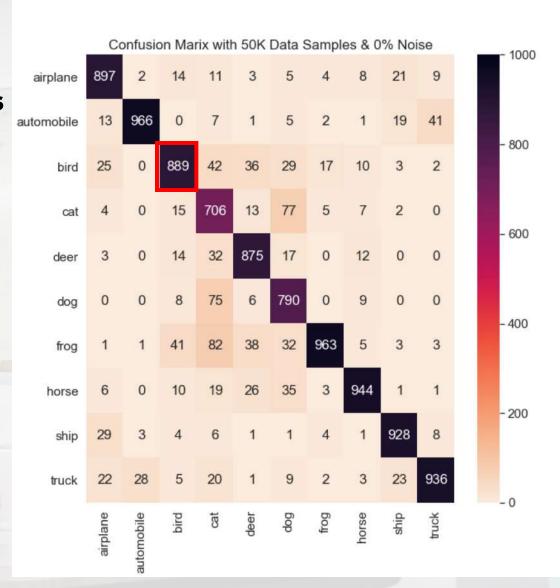
Lowest accuracy for class 'cat' and 'dog'



Results

- Baseline accuracy: 89% (across all classes)
- Accuracy varies dramatically across classes

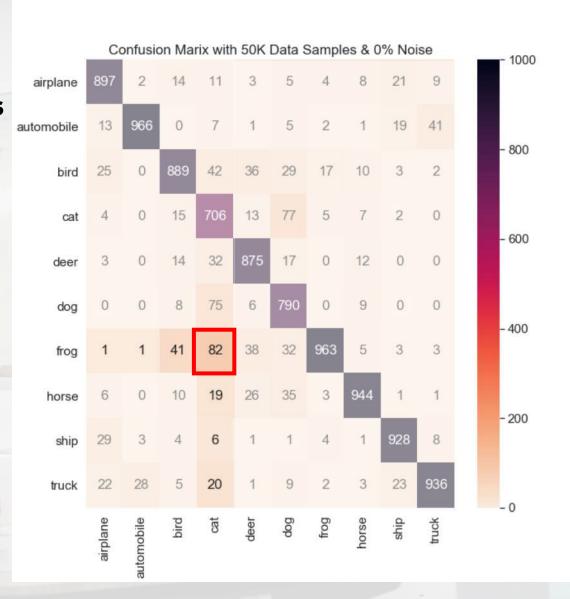
- Lowest accuracy for class 'cat' and 'dog'
- Class 'bird' has a fairly high accuracy



Results

- Baseline accuracy: 89% (across all classes)
- Accuracy varies dramatically across classes

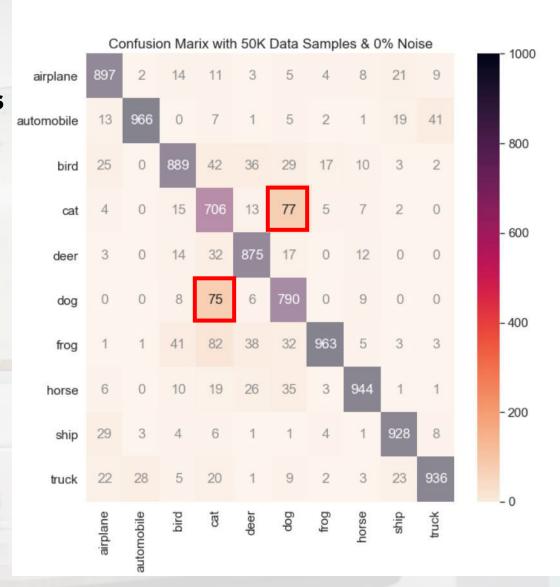
- Lowest accuracy for class 'cat' and 'dog'
- Class 'bird' has a fairly high accuracy
- Higher confusion for 'cat' → 'frog' and for 'cat' → 'dog'



Results

- Baseline accuracy: 89% (across all classes)
- Accuracy varies dramatically across classes

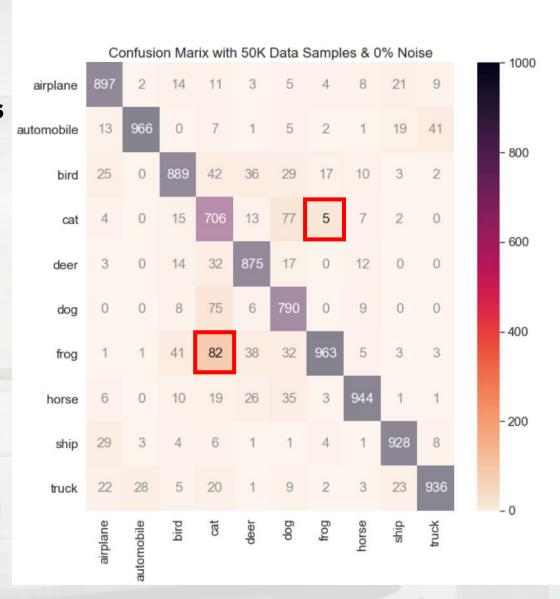
- Lowest accuracy for class 'cat' and 'dog'
- Class 'bird' has a fairly high accuracy
- Higher confusion for 'cat' → 'frog' and for 'cat' → 'dog'
- As easy to mistake a cat for a dog, than a dog for a cat



Results

- Baseline accuracy: 89% (across all classes)
- Accuracy varies dramatically across classes

- Lowest accuracy for class 'cat' and 'dog'
- Class 'bird' has a fairly high accuracy
- Higher confusion for 'cat' → 'frog' and for 'cat' → 'dog'
- As easy to mistake a cat for a dog, than a dog for a cat
- Easier to mistake a cat for a frog, than a frog for a cat
- Confusion is NOT SYMMETRICAL across classes

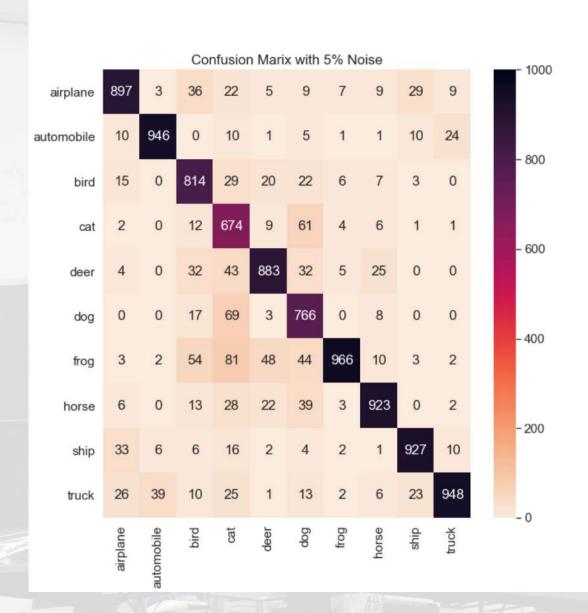


Goal:

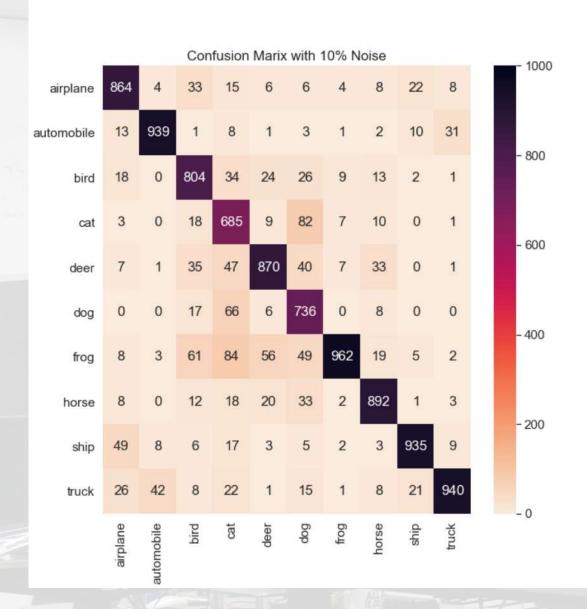
Study impact of noise in labeling process on model performance

Protocol:

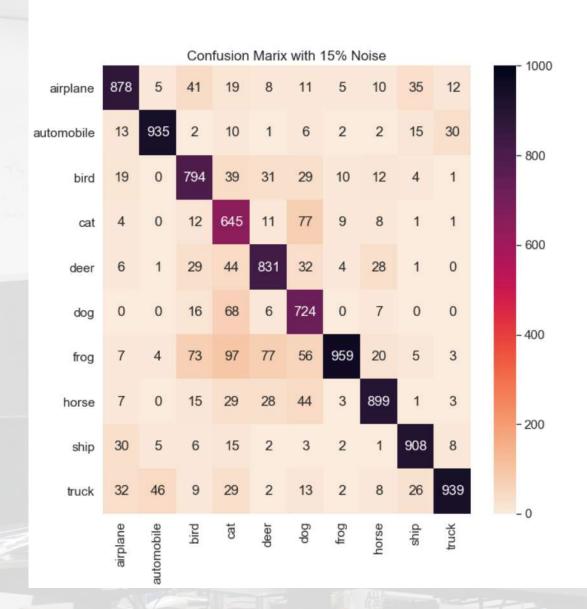
- We randomly shuffle the labels within the selected subset
- We select n% of the 50,000 records (full dataset)
 - Those records are chosen randomly, with no distinction of the class
- We repeat the same experiment 5 times for each amount to eliminate noisy results
 - Different levels of noise of data might lead to different results
 - We chose 5 times because of compute power limitations
- We observe the accuracy and the confusion matrix



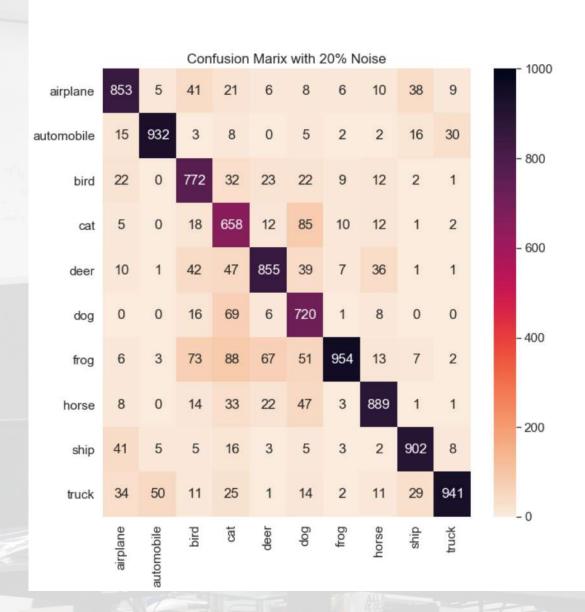
Average Confusion Matrix with 5% noisy labels



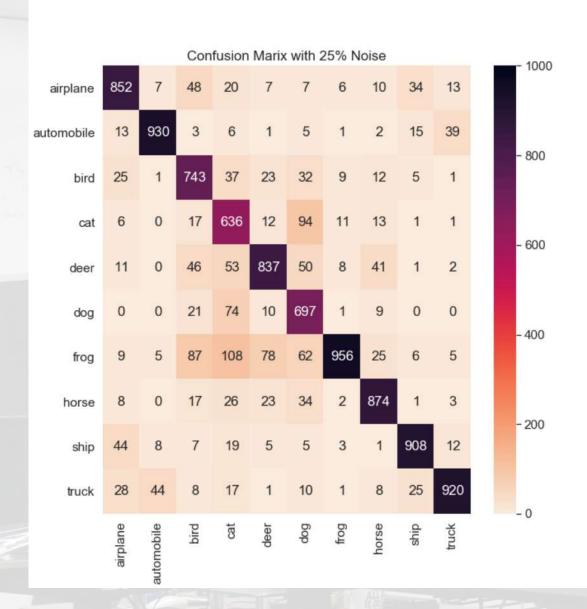
Average Confusion Matrix with 10% noisy labels



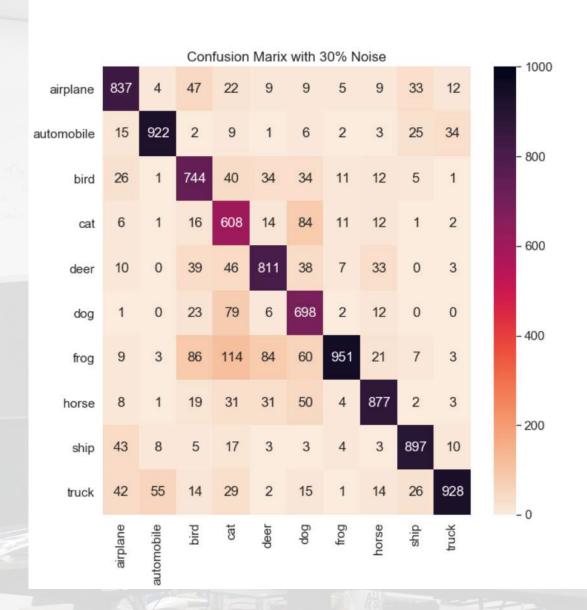
Average Confusion Matrix with 15% noisy labels



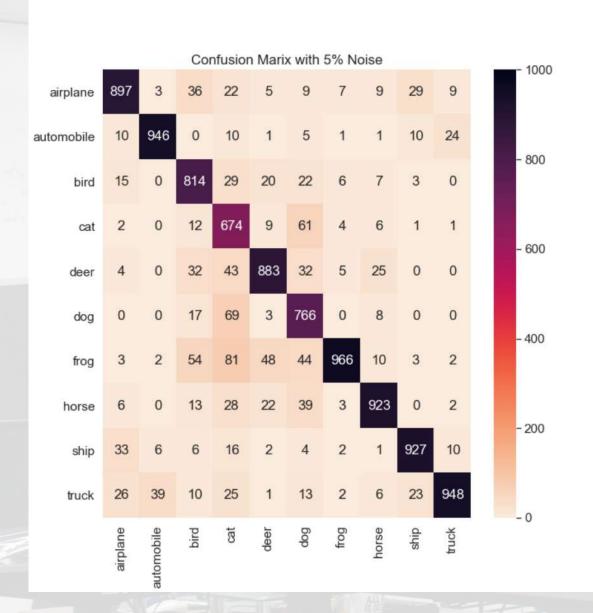
Average Confusion Matrix with 20% noisy labels

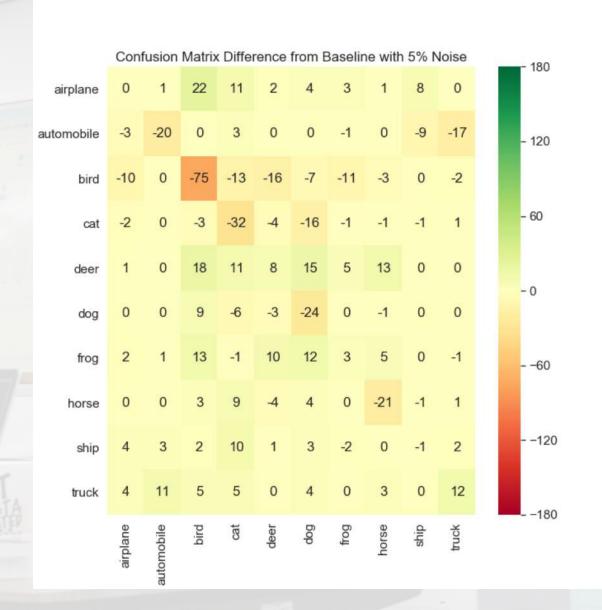


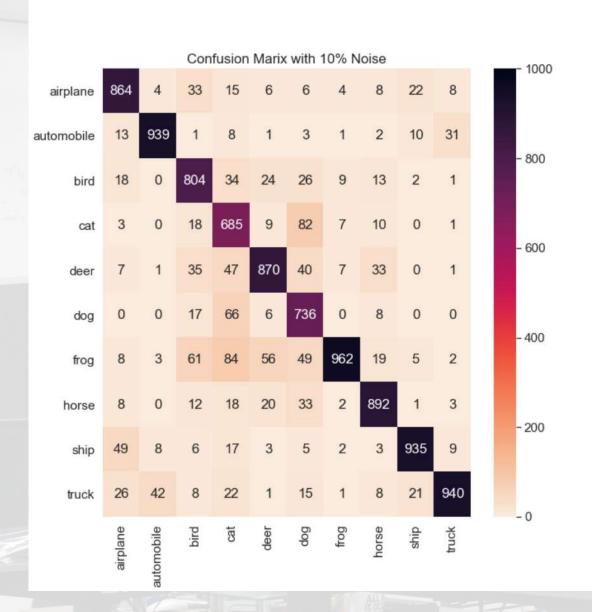
Average Confusion Matrix with 25% noisy labels

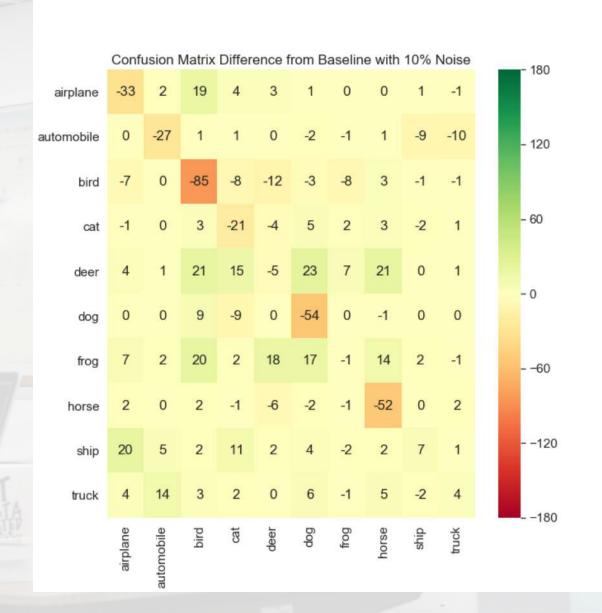


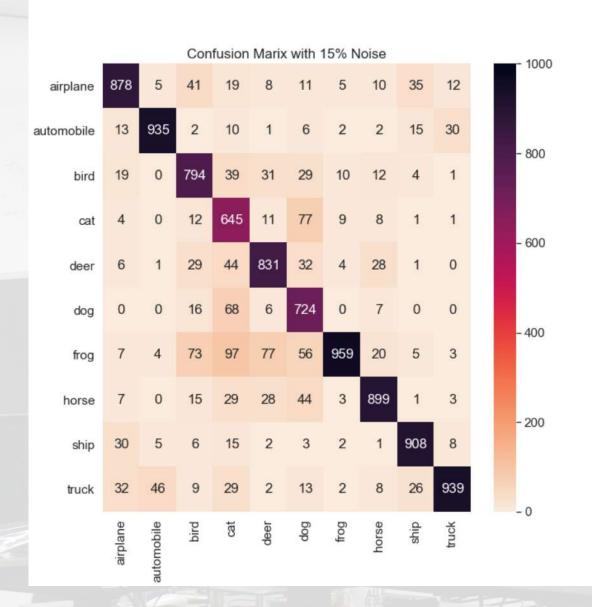
Average Confusion Matrix with 30% noisy labels

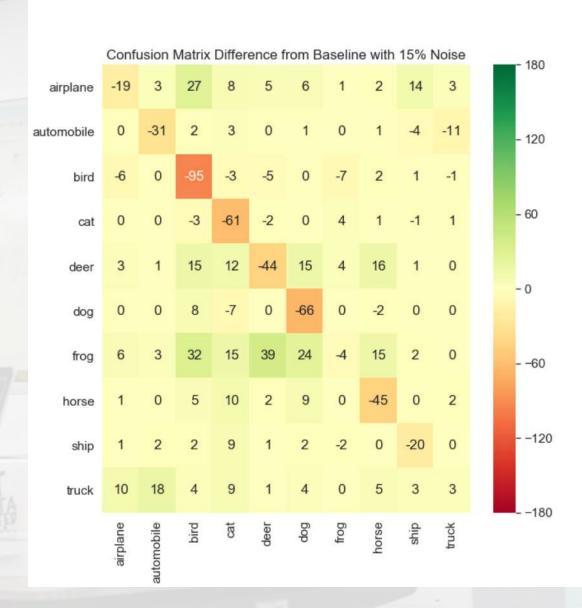


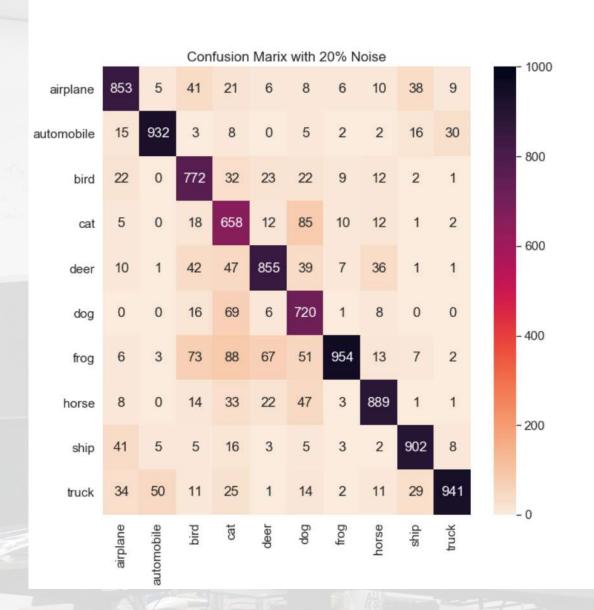


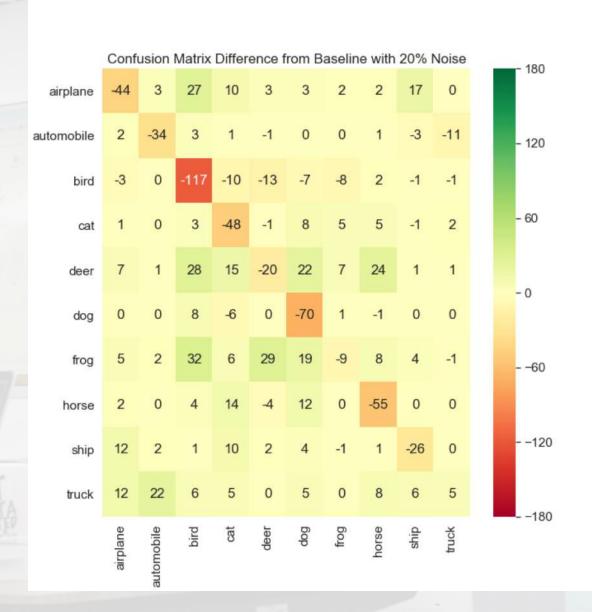


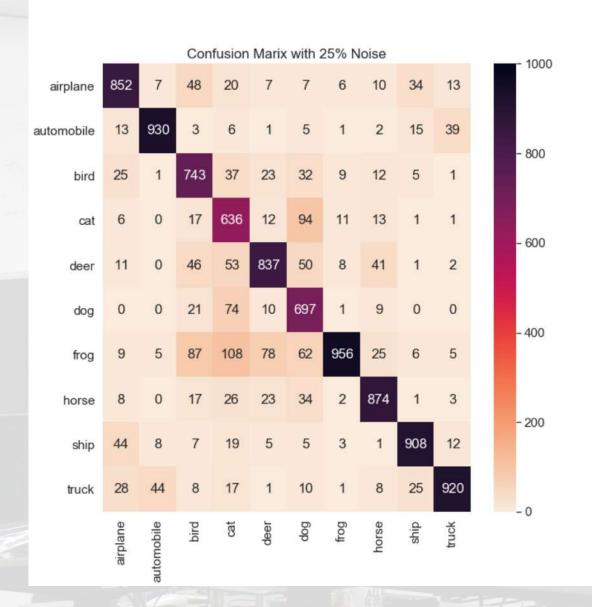


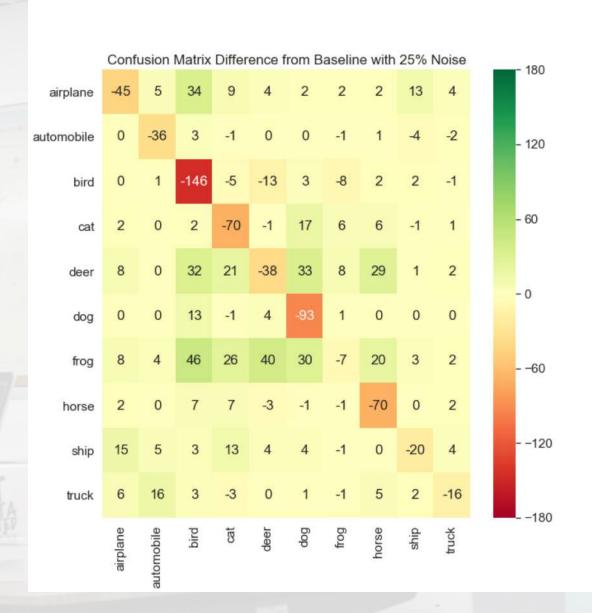


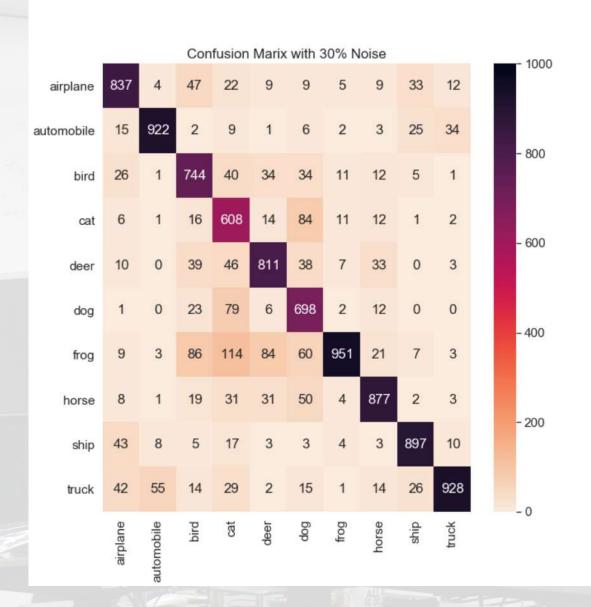


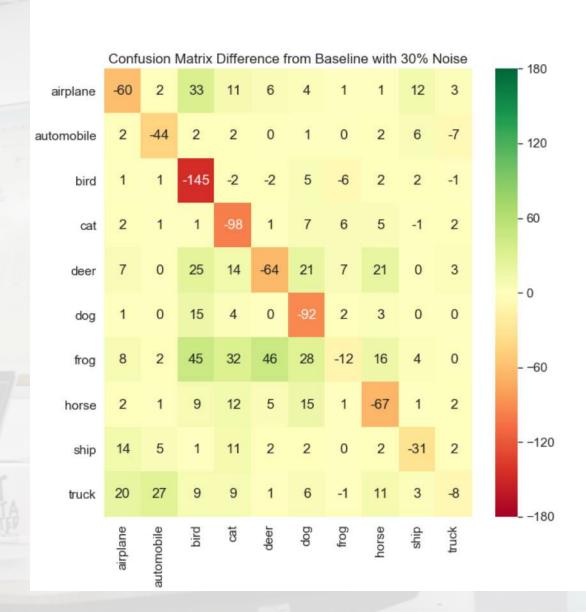


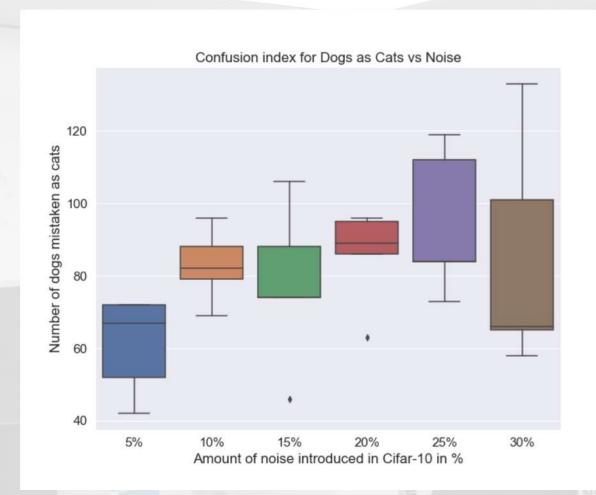


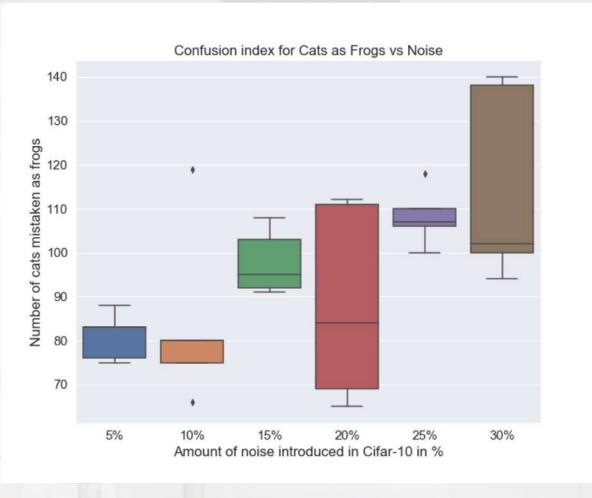










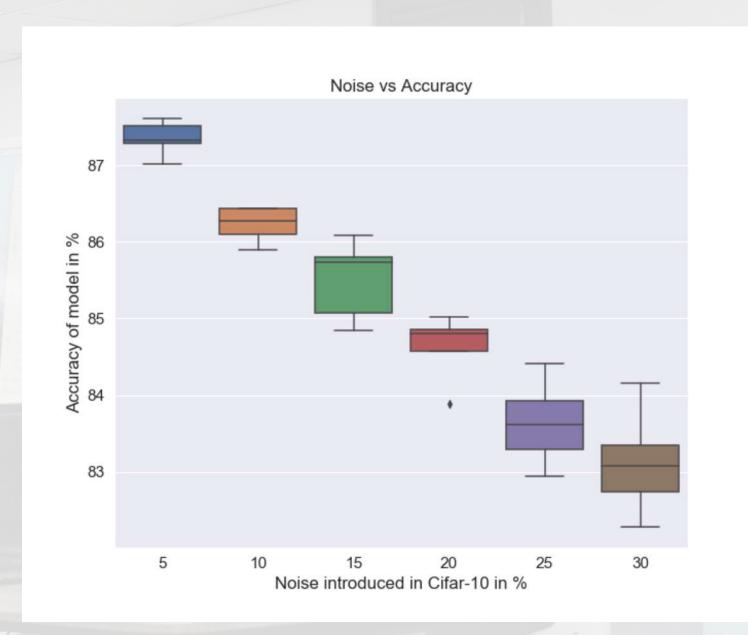


Confusion {dog → cat} vs. labeling noise level

Confusion {cat → frog} vs. labeling noise level

Results

 Accuracy seems to drop linearly with the amount of noise in the labels



EXPERIMENT #2: DATA VOLUME REDUCTION

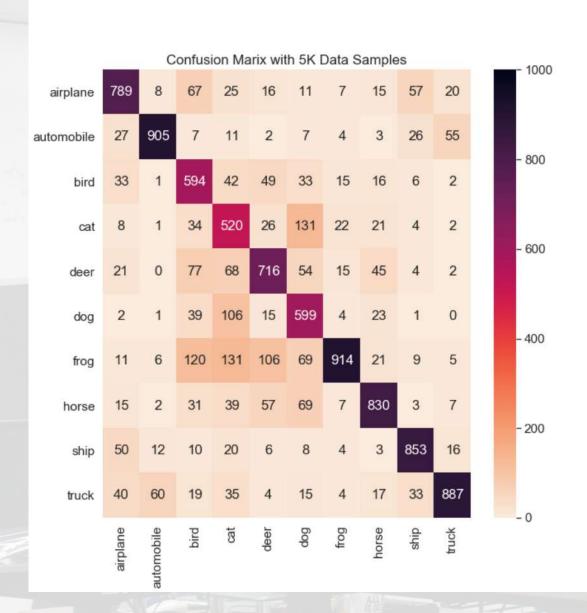
Goal:

Study impact of size of training set on model performance

Protocol:

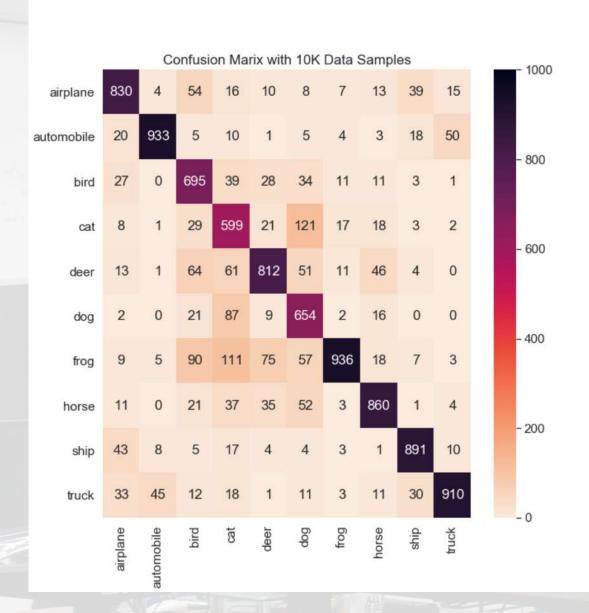
- We increase the size of the training set from 5,000 records (10%) to 50,000 records (full dataset)
 - Those records are chosen randomly
- We repeat the same experiment 5 times for each amount to eliminate noisy results
 - Different subsets of data might lead to different results
 - We chose 5 times because of compute power limitations
- We report the accuracy and the confusion matrix

EXPERIMENT #2: DATA VOLUME REDUCTION

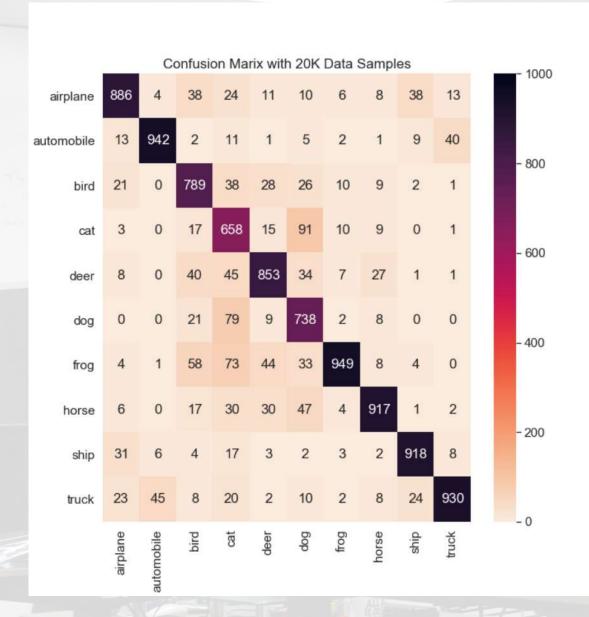


Average Confusion Matrix with size 5k samples

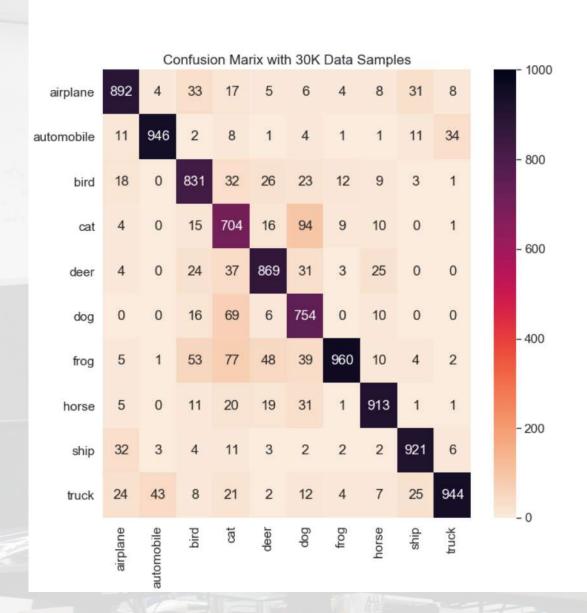
EXPERIMENT #2: DATA VOLUME REDUCTION



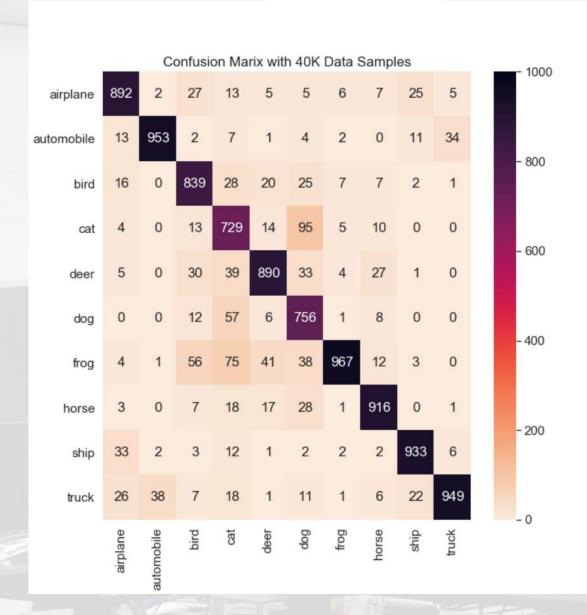
Average Confusion Matrix with size 10k samples



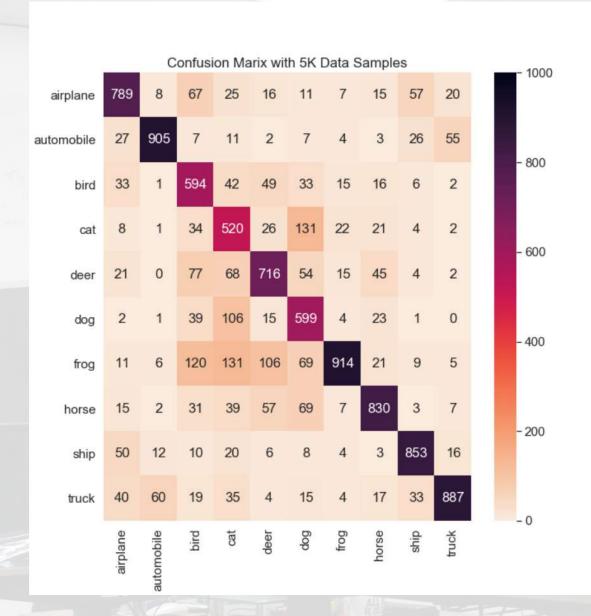
Average Confusion Matrix with size 20k samples

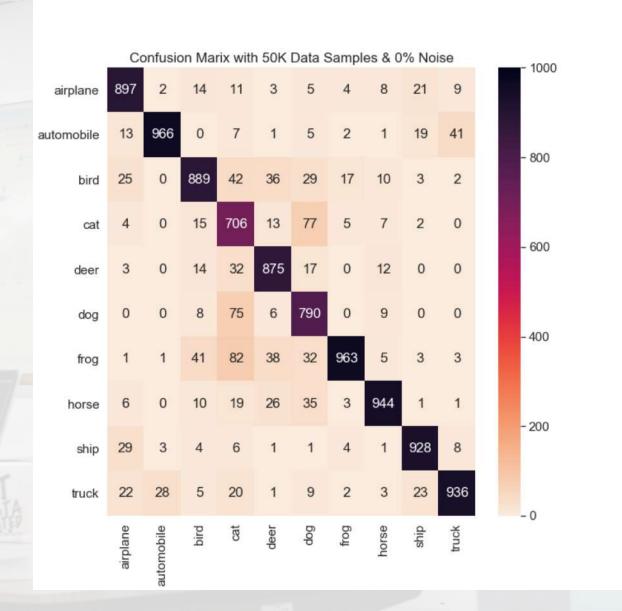


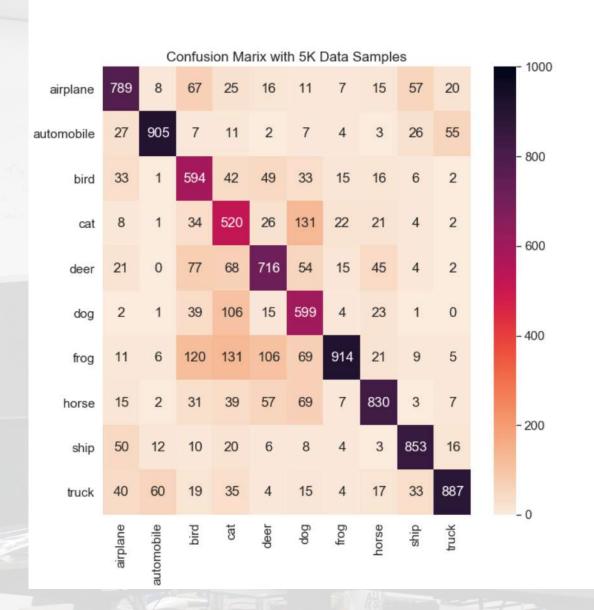
Average Confusion Matrix with size 30k samples

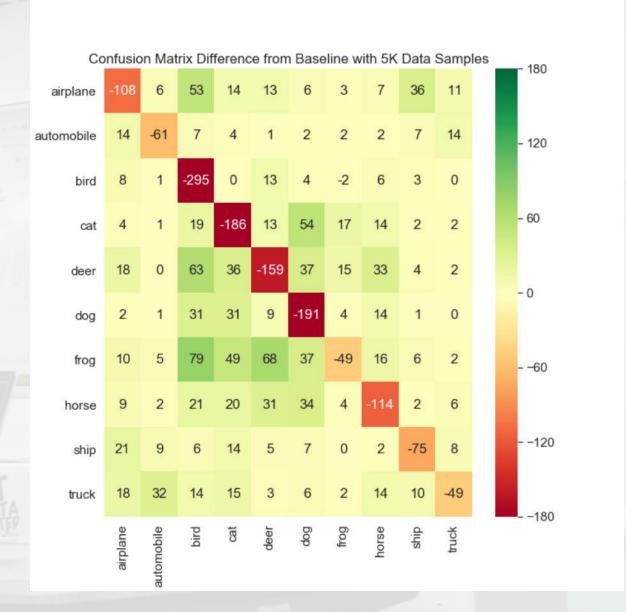


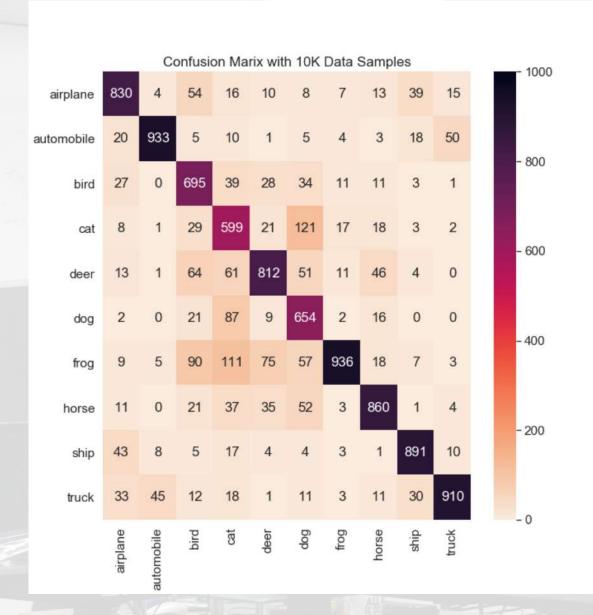
Average Confusion Matrix with size 40k samples

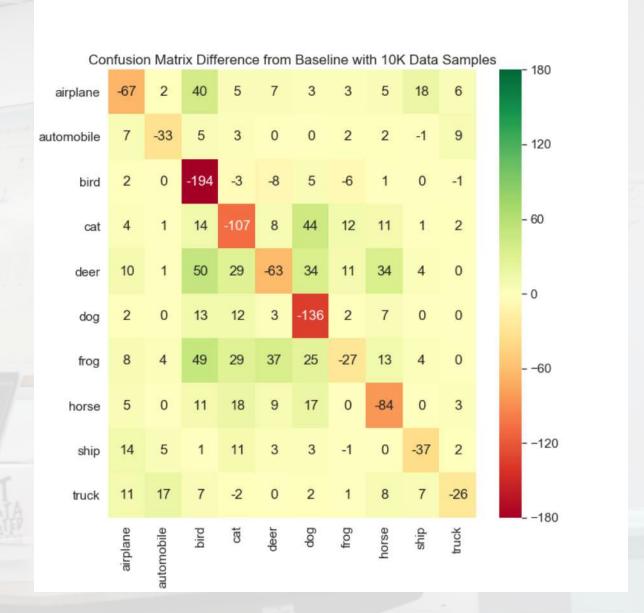


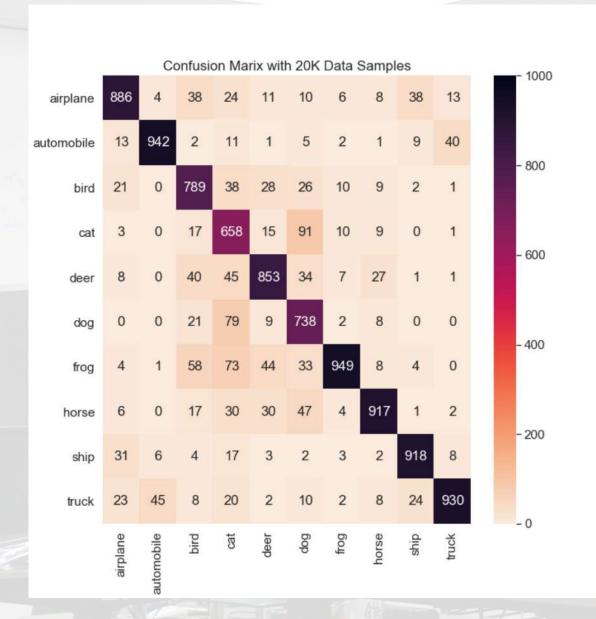


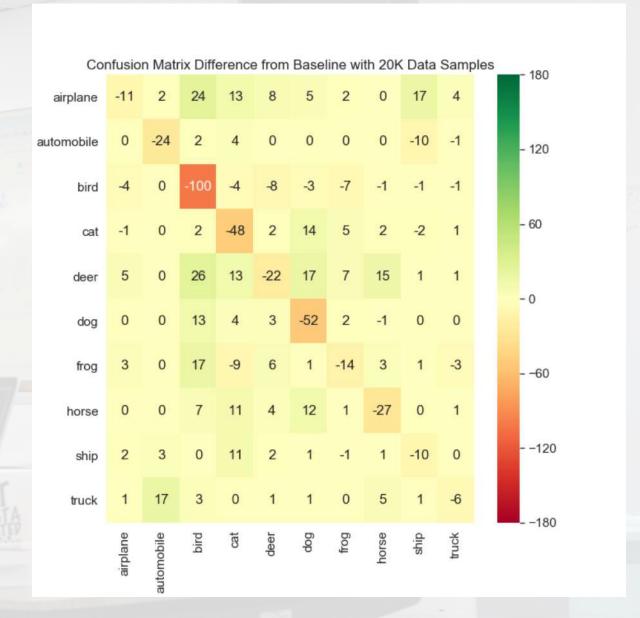


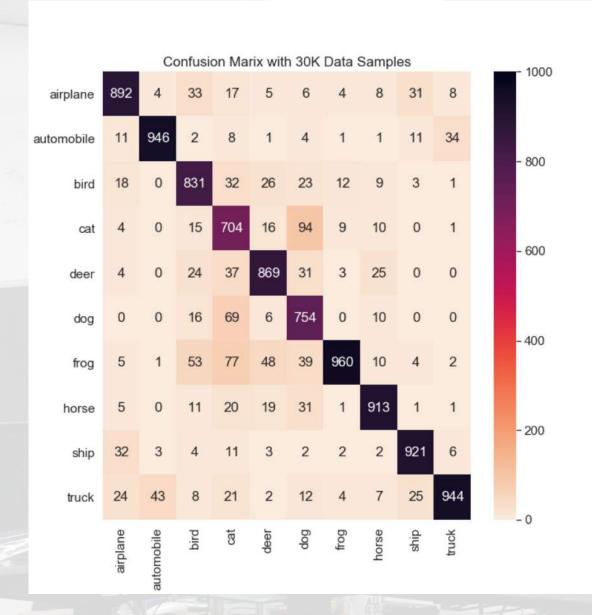


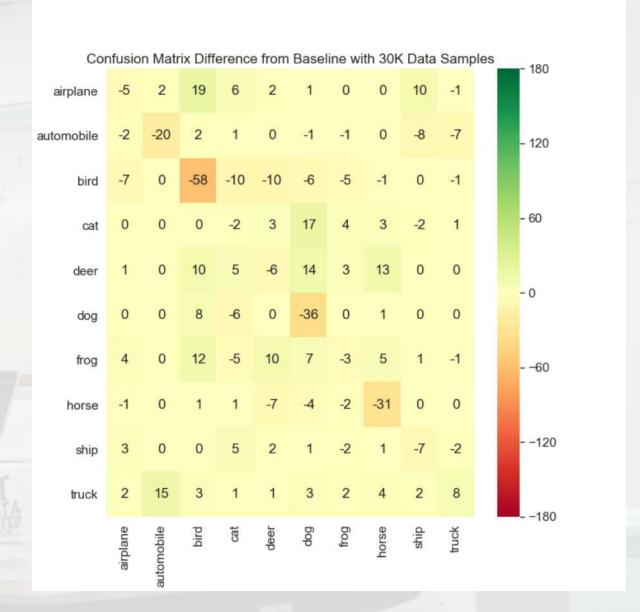


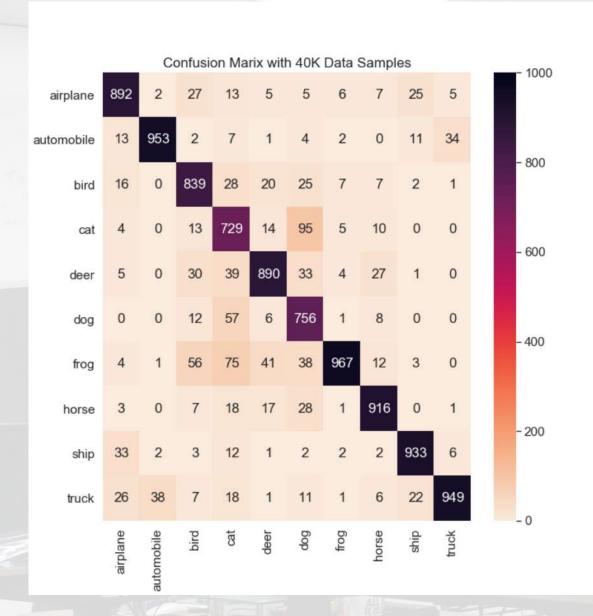


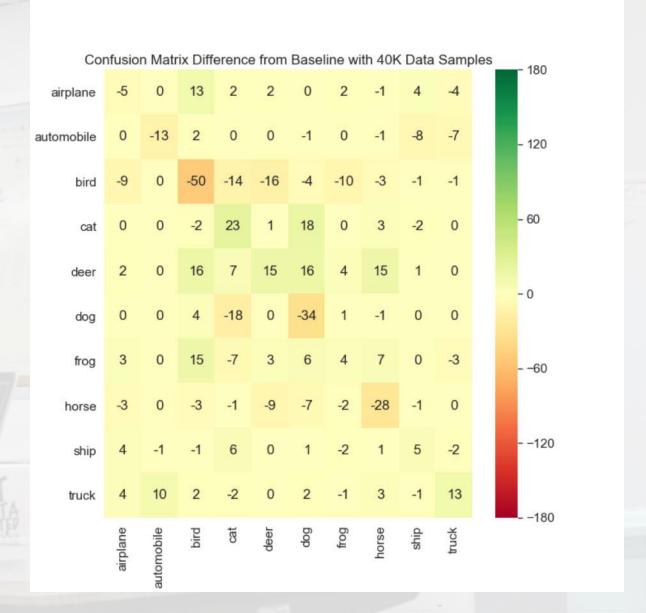


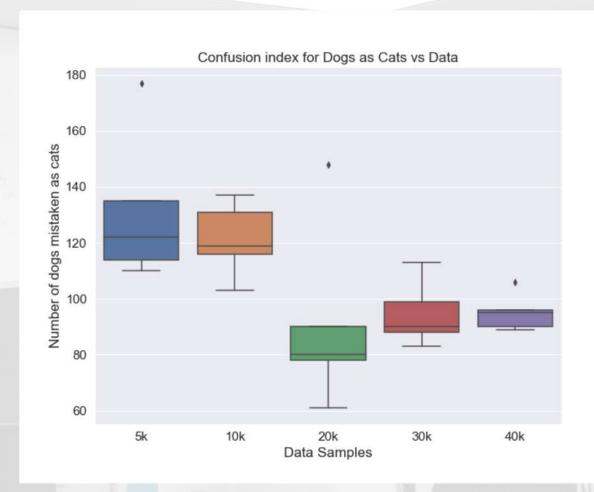


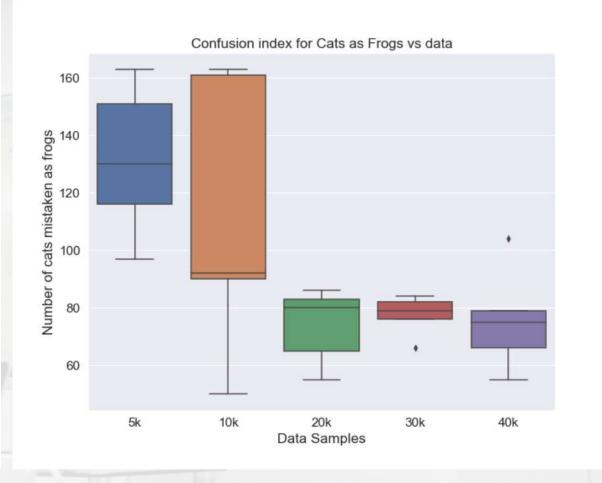










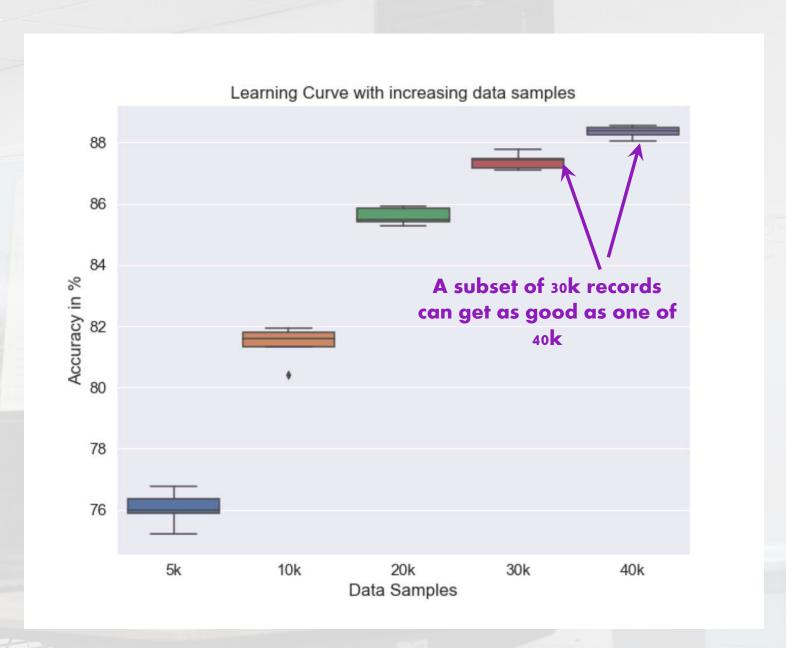


Confusion {dog → cat}
vs. volume of training data

Confusion {cat → frog} vs. volume of training data

Results

- Accuracy gets asymptotically better with more data
- 10k gets us more than 90% of the way there
- 20k (less than half) gets us
 95+% of the way there
- The best sample of size 30k gets similar accuracy to the worse one with size 40k



A FEW CONCLUSIONS...

Lowest accuracy

lighest accuracy

Baseline		30% Labeling Noise		5K Data Samples	
Cat	706	Cat	608	Cat	520
Dog	790	Dog	698	Bird	594
Deer	875	Bird	744	Dog	599
Bird	889	Deer	811	Deer	716
Airplane	897	Airplane	837	Airplane	789
Ship	928	Horse	877	Horse	830
Truck	936	Ship	897	Ship	853
Horse	944	Automobile	922	Truck	887
Frog	963	Truck	928	Automobile	905
Automobile	966	Frog	951	Frog	914

A FEW CONCLUSIONS...

 'Cat' is the least accurate class even with labeling noise and data quantity Lowest accuracy

Highest accuracy

Baseline		30% Labeling Noise		5K Data Samples	
Cat	706	Cat	608	Cat	520
Dog	790	Dog	698	Bird	594
Deer	875	Bird	744	Dog	599
Bird	889	Deer	811	Deer	716
Airplane	897	Airplane	837	Airplane	789
Ship	928	Horse	877	Horse	830
Truck	936	Ship	897	Ship	853
Horse	944	Automobile	922	Truck	887
Frog	963	Truck	928	Automobile	905
Automobile	966	Frog	951	Frog	914

A FEW CONCLUSIONS...

- 'Cat' is the least accurate class even with labeling noise and data quantity
- 'Bird' class relative performance decreases with labeling noise and volume reduction

Lowest accuracy

Highest accuracy

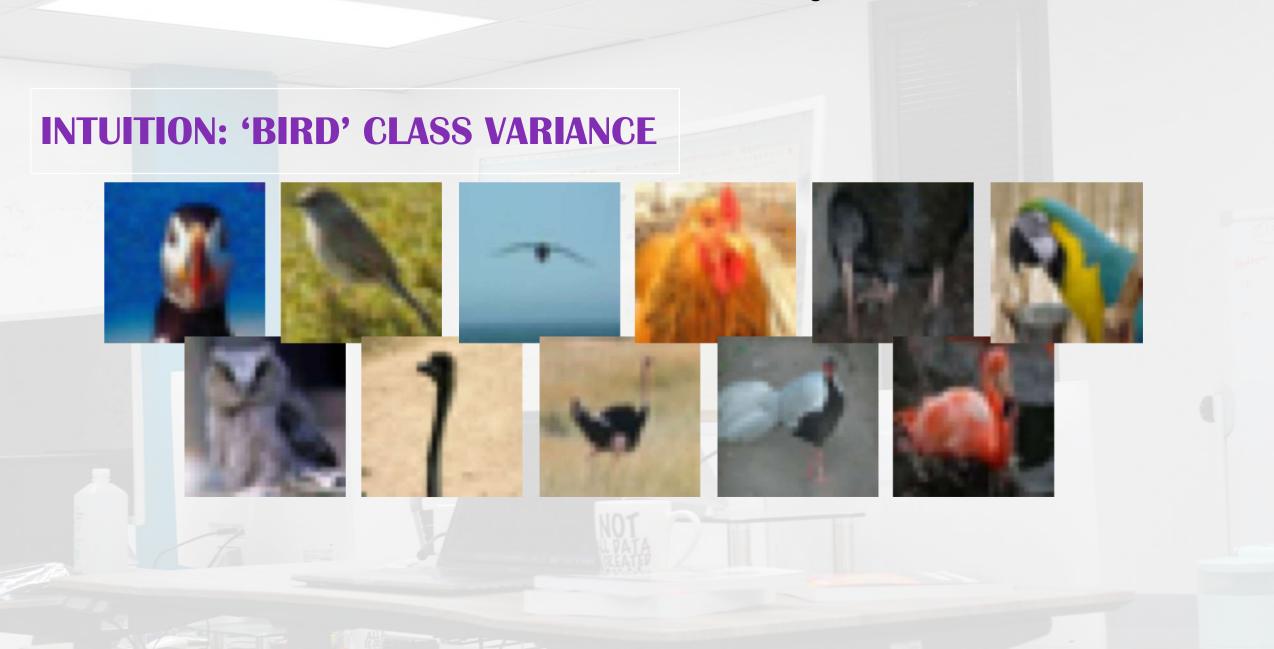
Baseline		30% Labeling Noise		5K Data Samples	
Cat	706	Cat	608	Cat	520
Dog	790	Dog	698	Bird	594
Deer	875	Bird	744	Dog	599
Bird	889	Deer	811	Deer	716
Airplane	897	Airplane	837	Airplane	789
Ship	928	Horse	877	Horse	830
Truck	936	Ship	897	Ship	853
Horse	944	Automobile	922	Truck	887
Frog	963	Truck	928	Automobile	905
Automobile	966	Frog	951	Frog	914

A FEW CONCLUSIONS...

- 'Cat' is the least accurate class even with labeling noise and data quantity
- 'Bird' class relative performance decreases with labeling noise and volume reduction
- 'Frog' class stays stable with noise induction as well as data volume reduction

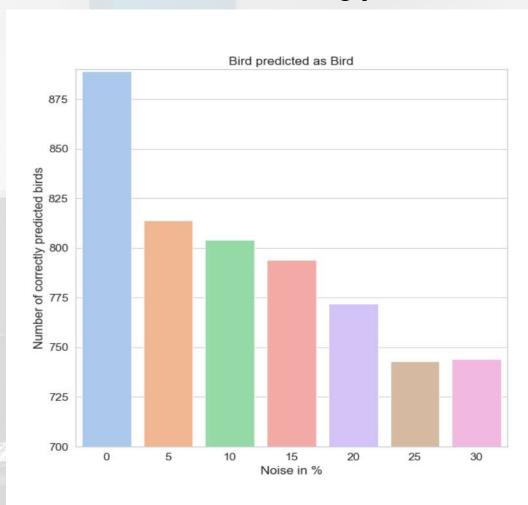
Lowest accuracy Highest accuracy

Baseline 30% Labeling Noise **5K Data Samples** Cat Cat Cat 706 608 520 Dog Dog Bird 790 698 594 Deer Bird Doa 744 875 599 Bird Deer Deer 811 889 716 **Airplane Airplane Airplane** 897 837 789 Ship Horse Horse 928 877 830 Truck Ship Ship 936 897 853 Horse **Automobile Truck** 922 887 Truck Frog **Automobile** 963 928 905 **Automobile** Froq 966 Frog 951 914

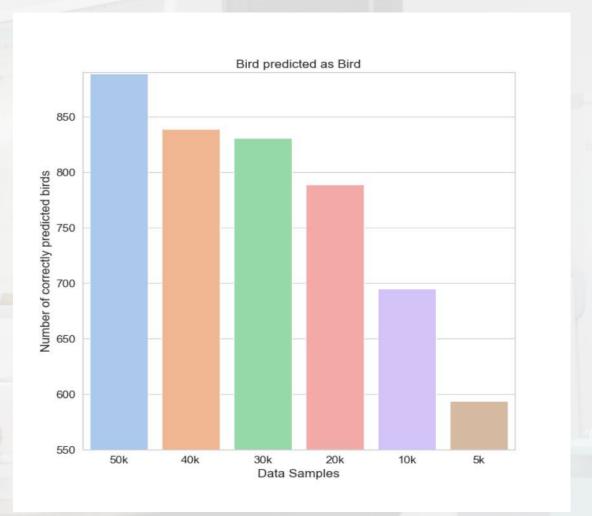


Most Sensitive Class - 'Bird'

Results with labeling pollution



Results with data volume reduction

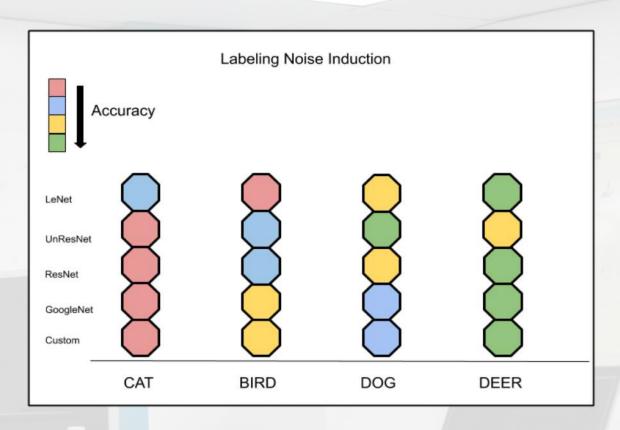


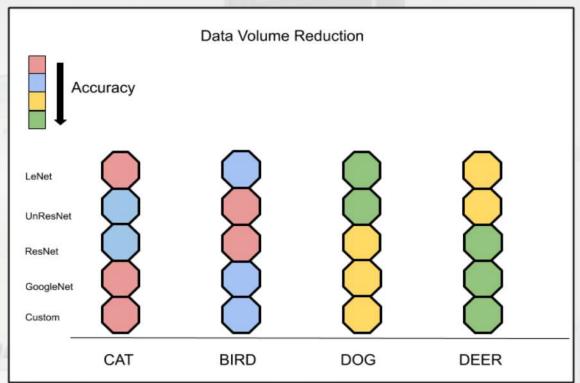
DISCUSSION: IS IT THE MODEL OR THE DATA?

Model	Epochs	Batch Size	Accuracy	
Custom (Keras with TF backend)	125	64	88.94	
LeNet (Pytorch)	125	64	66.6	
ResNet ₁₈ (Pytorch)	25	64	88.29	
UnResNet18 (Pytorch)	25	64	85.77	
GoogLeNet (Pytorch)	25	64	88.6	

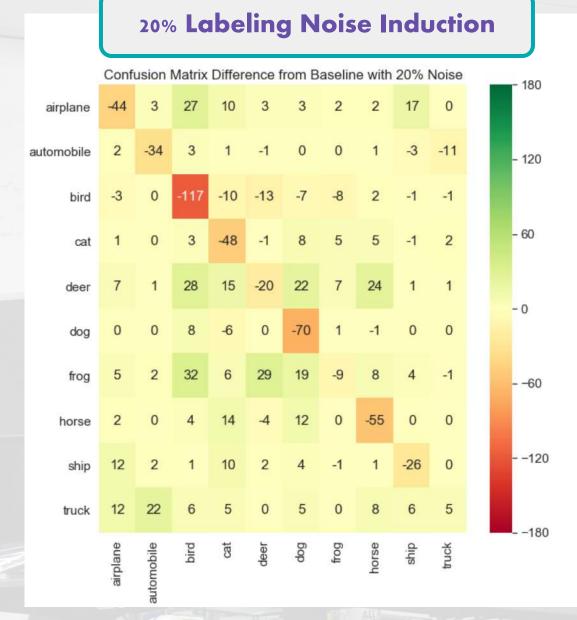
Same Experiments, Different Models

DISCUSSION: IS IT THE MODEL OR THE DATA?

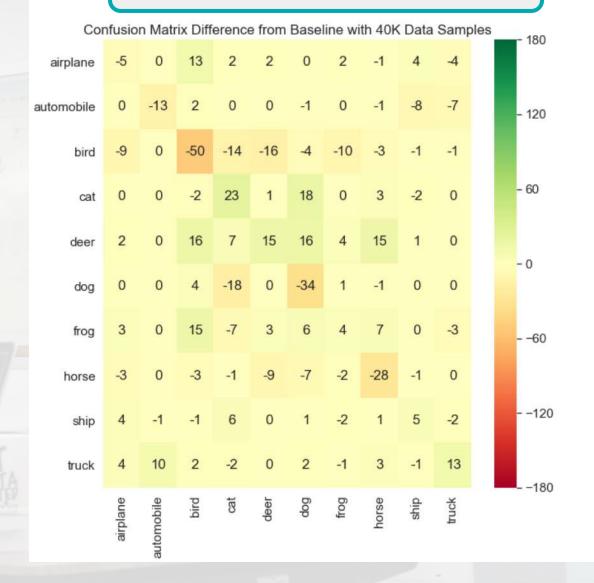




Same Experiments, Different Models



20% Data Volume Reduction



CLEAN LABELS
FULL TRAINING SET

100% "GOOD" DATA

20% VOLUME REDUCTION

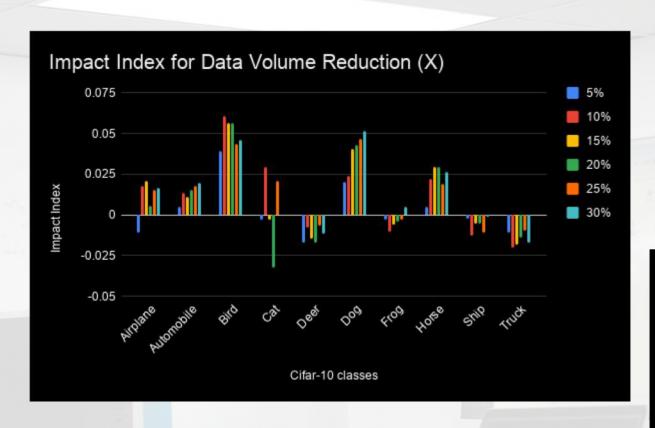
80% "GOOD" DATA

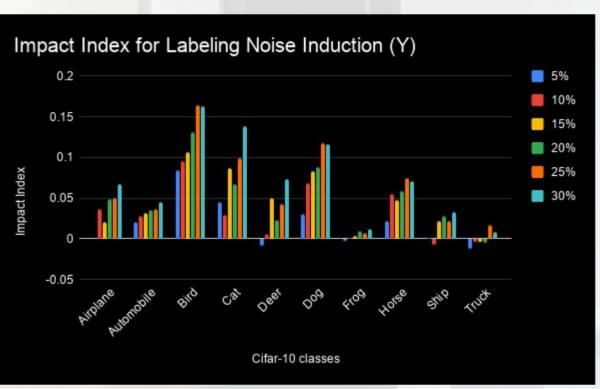
20% LABELING POLLUTION

80% "GOOD" DATA

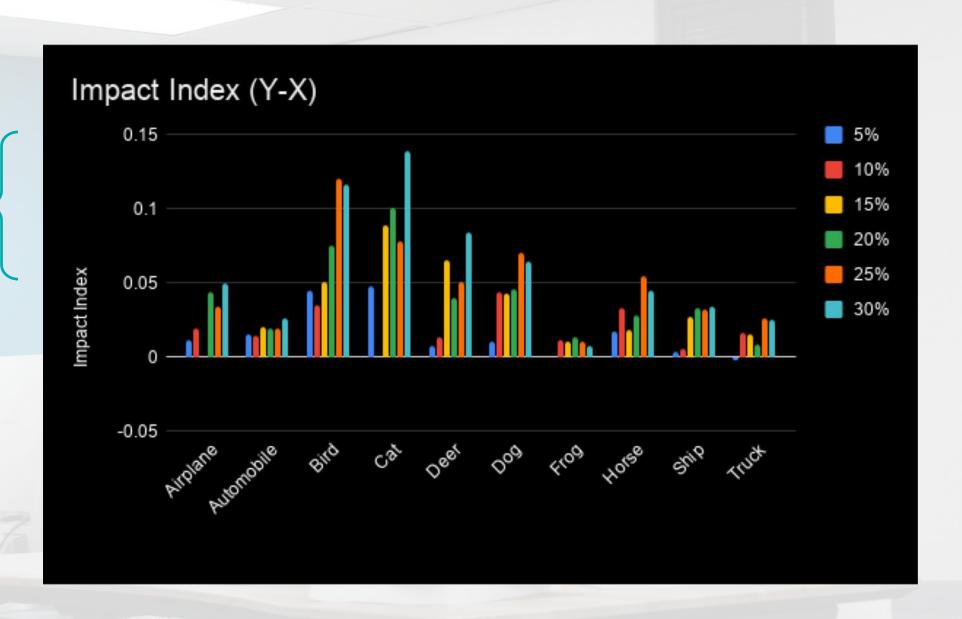
20% "BAD" DATA

2 COMBINED EFFECTS TO DECOUPLE

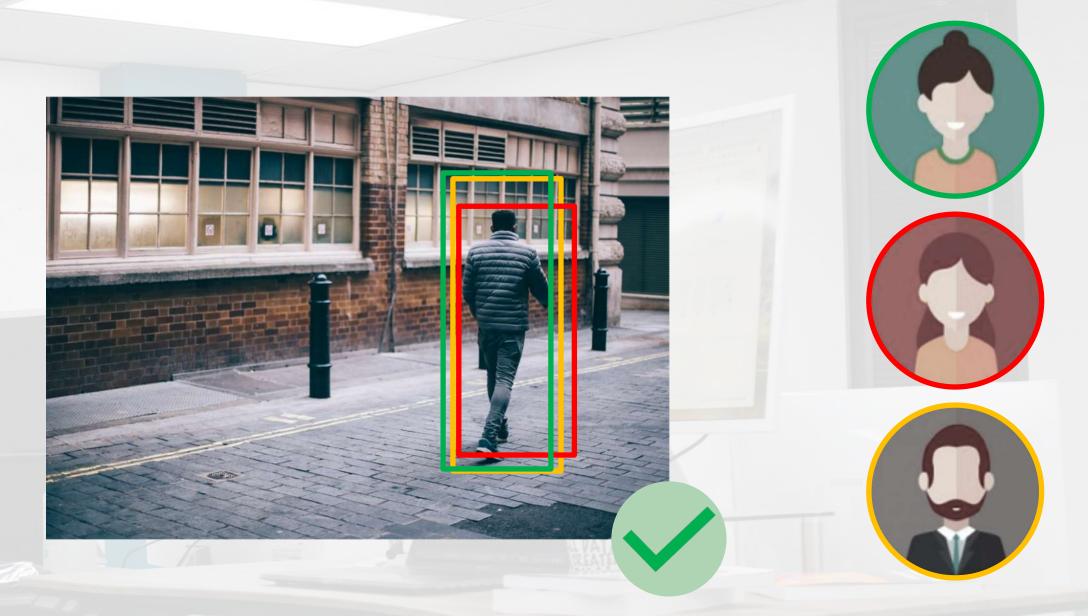


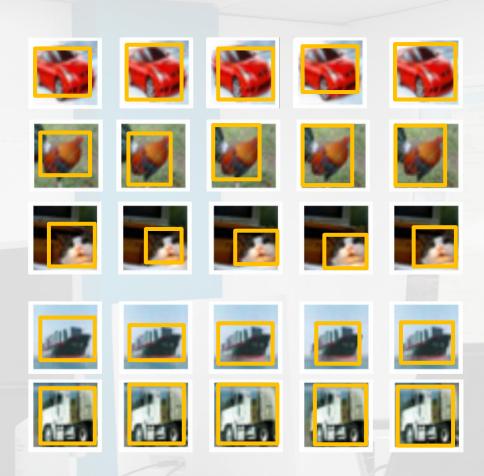


Harder to compensate for bad quality with higher volume



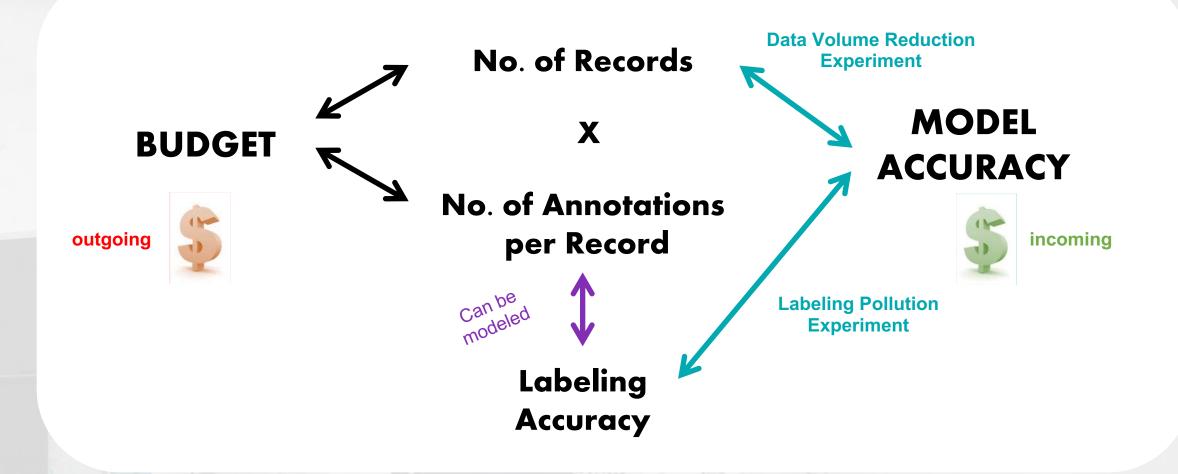
LET'S SAVE SOME MONEY!

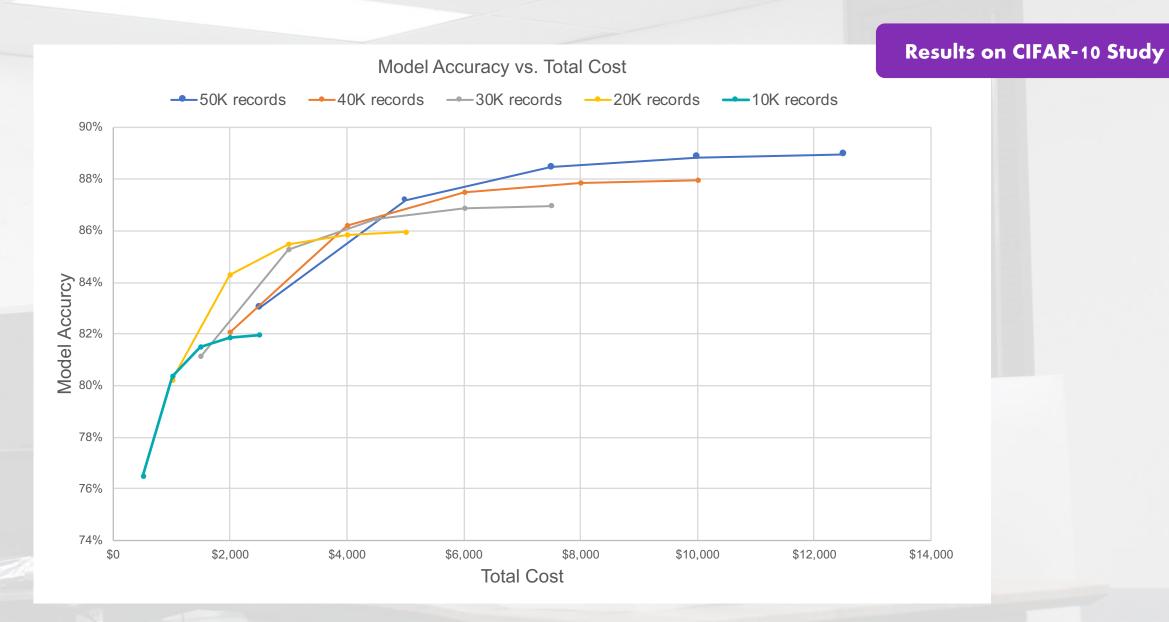


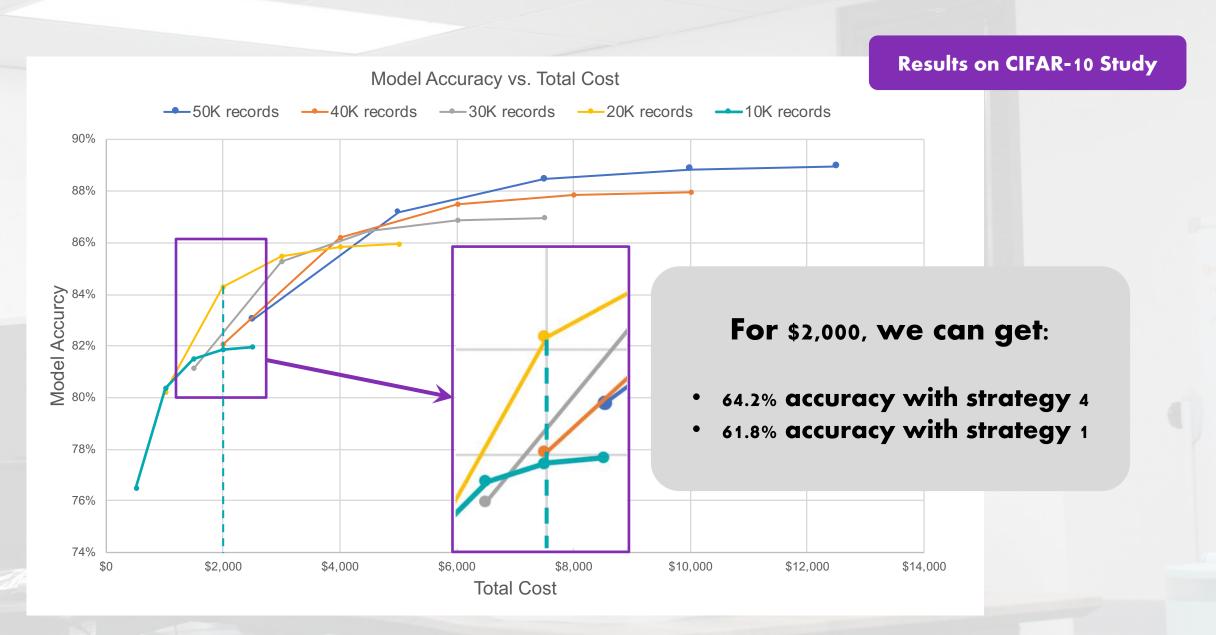


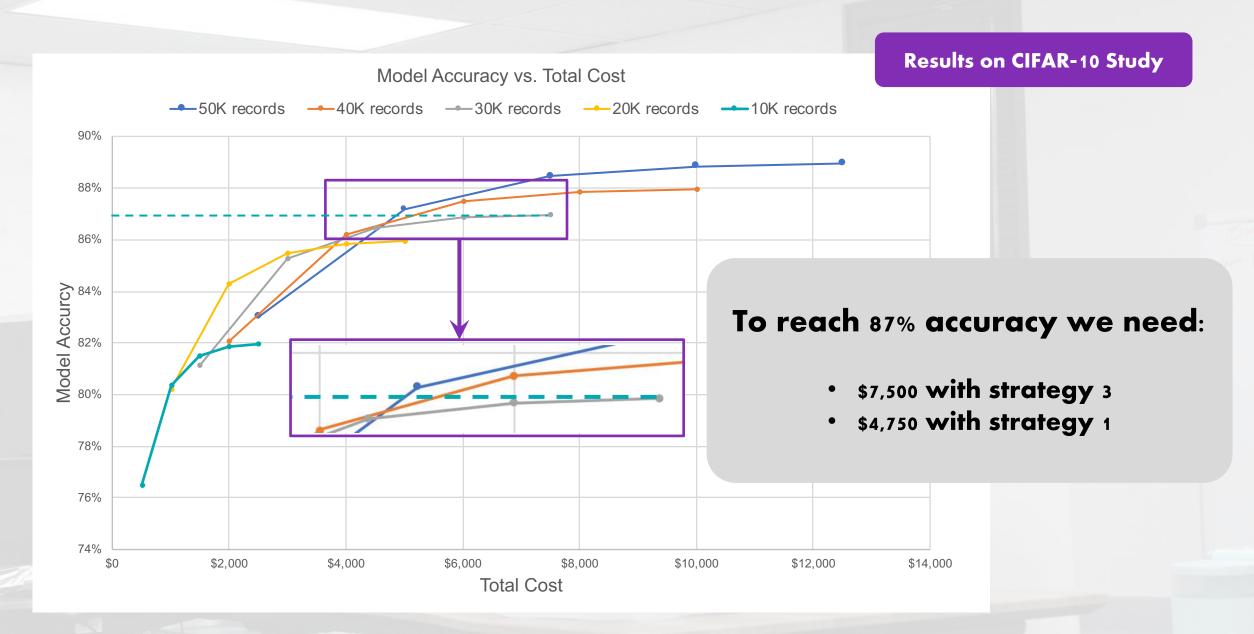
SUPERVISED LEARNING

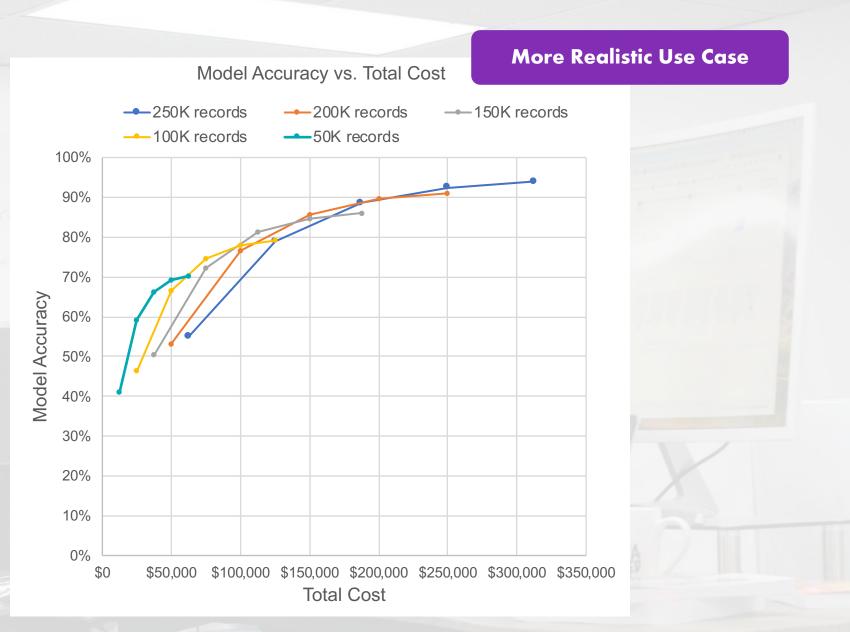
- All data is labeled
- No. of annotations is predetermined
- No. of annotations is arbitrary











NOT COVERED IN THIS TALK:

- Sensitivity by cluster (instead of class)
- Combining data usefulness with difficulty to label
- Combining with AL: "non-binary" Active Learning

CONCLUSIONS

- Class sensitivity is inerrant to the data
 - Not all data requires as much labeling care
 - Better models can't solve everything...
- "Compensating" for bad labels
 - Is more or less difficult depending on the class
 - Might not be possible as all
- Smarter labeling strategies are needed
 - Saving \$\$ on labeling doesn't necessarily imply labeling less data
 - Local optimization is coming (record level labeling recommendations)
 - Bring the area of non-binary Active Learning

THANK YOU!

www.alectio.com

Follow us on LinkedIn & Medium

