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ABOUT ALECTIO

* The first ML company dedicated to Data Curation
* Founded in 2019

* Mission:

Empower ML experts to build, train and retrain

models with less data. and hence less resources.




OUTLINE

The Big Data Labeling Crisis
Understanding Class Separation

Not All Data is Created Equal

How to Best Spend your Labeling Budget

Results and Conclusions



BIG DATA LABELING CRISIS




OUR ‘TOY’ CASE STUDY: CIFAR-10

The Data

* CIFAR-10

* 10 classes of everyday “objects”
* 50,000 training samples

* 10,000 testing samples

The Model

* Small CNN
* 7layers
° 309.290 total parameters
° 308,394 trainable parameters
* 896 non-trainable parameters
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BASELINE RESULTS

Results

* Baseline accuracy: s9% (across all classes)
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BASELINE RESULTS

Results

Confusion Marix with 50K Data Samples & 0% Noise
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BASELINE RESULTS

Results

Confusion Marix with 50K Data Samples & 0% Noise
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BASELINE RESULTS

Results

* Baseline accuracy: s9% (across all classes)
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BASELINE RESULTS

Confusion Marix with 50K Data Samples & 0% Noise
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BASELINE RESULTS

Results
; Confusion Marix with 50K Data Samples & 0% Noise 1000
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BASELINE RESULITS

Confusion Marix with 50K Data Samples & 0% Noise 1000
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Results

* Baseline accuracy: s9% (across all classes)
* Accuracy varies dramatically across classes
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Results

* Baseline accuracy: s9% (across all classes)
* Accuracy varies dramatically across classes

More details...

* Lowest accuracy for class ‘cat’ and ‘dog’
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Confusion Marix with 50K Data Samples & 0% Noise
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BASELINE RESULITS

Confusion Marix with 50K Data Samples & 0% Noise

Results

1000

* Baseline accuracy: s9% (across all classes)
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BASELINE RESULITS

Confusion Marix with 50K Data Samples & 0% Noise

Results

1000

* Baseline accuracy: s9% (across all classes)
* Accuracy varies dramatically across classes
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Results

More details...

* Lowest accuracy for class ‘cat’ and ‘dog’ cat
* Class ‘bird’ has a fairly high accuracy i
* Higher confusion for ‘cat’ = ‘frog’ and oo

for ‘cat’ = ‘dog’
* As easy to mistake a cat for a dog,
than a dog for a cat horse
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BASELINE RESULITS

Confusion Marix with 50K Data Samples & 0% Noise

* Baseline accuracy: s9% (across all classes) arpone TN
* Accuracy varies dramatically across classes .
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EXPERIMENT #1: LABELING POLLUTION

Goal:

Study impact of noise in labeling process on model performance

Protocol:

* We randomly shuffle the labels within the selected subset

* We select n% of the 50,000 records (full dataset)
* Those records are chosen randomly, with no distinction of the class

* We repeat the same experiment 5 times for each amount to eliminate
noisy results
 Different levels of noise of data might lead to different results
* We chose 5 times because of compute power limitations

* We observe the accuracy and the confusion matrix
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EXPERIMENT #1: LABELING POLLUTION
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EXPERIMENT #1: LABELING POLLUTION

Confusion Marix with 10% Noise

1000
airplane 4 33 15 6 6 4 8 22 8
automobile
800
bird
t o o L4
= o Average Confusion Matrix with
deer 10% noisy labels
dog
400
frog
horse
- 200
ship
truck 26 42 8 22 1 15 1 8 21
-0
o o o o = (=) o (] . =
§ 3 5 8 § 8 & § & B
= £ =
® 9
E



EXPERIMENT #1: LABELING POLLUTION

Confusion Marix with 15% Noise
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EXPERIMENT #1: LABELING POLLUTION

g
&

airplane

automobile

Confusion Marix with 20% Noise

41

bird

21

25

cat

6

deer

8

14

dog

6

10

ship

truck

1000

800

- 600

400

- 200

Average Confusion Matrix with
20% noisy labels



EXPERIMENT #1: LABELING POLLUTION

Confusion Marix with 25% Noise

1000
airplane 7 48 20 7 7 6 10 34 13
automobile
800
bird
o=t | Average Confusion Matrix with
. 25% noisy labels
dog
400
frog
horse
- 200
ship
truck 44
-0

bird
cat
deer
dog
frog
horse
ship
truck

©
c
I
o
—
@

automobile



EXPERIMENT #1: LABELING POLLUTION

Confusion Marix with 30% Noise
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EXPERIMENT #1: LABELING POLLUTION
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EXPERIMENT #1: LABELING POLLUTION

3
S

airplane

automobile

Confusion Marix with 10% Noise

©

bird

15

cat

6

deer

6

15

dog

4

8

o]

horse

@

truck

1000

800

- 600

400

- 200

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

fruck

Confusion Matrix Difference from Baseline with 10% Noise

33 2 19 4
o -27 1 1
-7 0 85 8
-1 0 3 21
4 1 21 15
0 0 9 9
7 2 WO 2
2 0 2 -1
20 5 2 11
4 14 3 2
[} )] © o
§ 3 & 9
- o]
5 5
)

3

18

deer

1

54

17

dog

0

1

0

21

(&)}

horse

1

ship

]

-10

PN

truck

180

120

- 60

-120

--180



airplane

automobile

bird

cat

deer

dog

frog

horse

ship

fruck

EXPERIMENT #1: LABELING POLLUTION
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EXPERIMENT #1: LABELING POLLUTION
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EXPERIMENT #1: LABELING POLLUTION
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EXPERIMENT #1: LABELING POLLUTION
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Number of dogs mistaken as cats

EXPERIMENT #1: LABELING POLLUTION

Confusion index for Dogs as Cats vs Noise Confusion index for Cats as Frogs vs Noise
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EXPERIMENT #1: LABELING POLLUTION

Noise vs Accuracy

Results
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EXPERIMENT #2: DATA VOLUME REDUCTION

Goal:

Study impact of size of training set on model performance

Protocol:

* We increase the size of the training set from 5,000 records (10%) to 50,000
records (full dataset)
* Those records are chosen randomly

* We repeat the same experiment 5 times for each amount to eliminate
noisy results
 Different subsets of data might lead to different results
* We chose 5 times because of compute power limitations

* We report the accuracy and the confusion matrix



EXPERIMENT #2: DATA VOLUME REDUCTION
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EXPERIMENT #2: DATA VOLUME REDUCTION
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EXPERIMENT #2: DATA VOLUME REDUCTION

Confusion Marix with 20K Data Samples
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EXPERIMENT #2: DATA VOLUME REDUCTION

Confusion Marix with 30K Data Samples
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EXPERIMENT #2: DATA VOLUME REDUCTION

Confusion Marix with 40K Data Samples

1000
airplane 2 27 13 5 5 6 7 25 5
automobile
800
bird
oot - Average Confusion Matrix with size
deer 40k samples
dog
400
frog
horse
- 200
ship
truck 26 38 7 18 1 11 1 6 22
-0
o e (=) o 3] -
5 8 § &§ £ ¢ § 3
L

o Q2
S e
=1 Q
= &
@ o
2
>
®



EXPERIMENT #2: DATA VOLUME REDUCTION
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EXPERIMENT #2: DATA VOLUME REDUCTION
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EXPERIMENT #2: DATA VOLUME REDUCTION
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EXPERIMENT #2: DATA VOLUME REDUCTION
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EXPERIMENT #2: DATA VOLUME REDUCTION
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EXPERIMENT #2: DATA VOLUME REDUCTION
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EXPERIMENT #2: DATA VOLUME REDUCTION

Confusion index for Dogs as Cats vs Data Confusion index for Cats as Frogs vs data
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EXPERIMENT #2: DATA VOLUME REDUCTION

Results Learning Curve with increasing data samples
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DISCUSSION: ARE ALL CLASSES EQUALLY IMPACIED?

A FEW CONCLUSIONS. e Baseline 30% Labeling Noise 5K Data Samples
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DISCUSSION: ARE ALL CLASSES EQUALLY IMPACIED?
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DISCUSSION: ARE ALL CLASSES EQUALLY IMPACIED?

INTUITION: ‘BIRD’ CLASS VARIANCE

1.




DISCUSSION: ARE ALL CLASSES EQUALLY IMPACIED?

Most Sensitive Class - ‘Bird’

Results with labeling pollution Results with data volume reduction
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DISCUSSION: IS IT THE MODEL OR THE DATA?

Model Epochs | Batch Size Accuracy
Custom (Keras with TF backend) 125 64 88.94
LeNet (Pytorch) 125 64 66.6
ResNet1s (Pytorch) 25 64 88.29
UnResNet1s (Pytorch) 25 64 85.77
GoogleNet (Pytorch) 25 64 88.6

Same Experiments, Different Models



DISCUSSION: IS IT THE MODEL OR THE DATA?

Labeling Noise Induction Data Volume Reduction

E lAccuracy E lAccuracy
LeNet LeNet
UnResNet UnResNet
ResNet ResNet
GoogleNet GoogleNet
Custom Custom

CAT BIRD DOG DEER CAT BIRD DOG DEER

Same Experiments, Different Models



DISCUSSION: VOLUME REDUCTION VS. LABELING NOISE

20% Labeling Noise Induction 20% Data Volume Reduction
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DISCUSSION: VOLUME REDUCTION VS. LABELING NOISE

CLEAN LABELS

100% “GOOD"” DATA
FULL TRAINING SET

20% LABELING POLLUTION 80% “GOOD” DATA

/ 20% “BAD” DATA

2 COMBINED EFFECTS TO DECOUPLE



DISCUSSION: VOLUME REDUCTION VS. LABELING NOISE

Impact Index for Data Volume Reduction (X)
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DISCUSSION: VOLUME REDUCTION VS. LABELING NOISE

Impact Index (Y-X)
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LET’S SAVE
SOME MONLEY!




TOWARDS A SMART LABELING STRATEGY
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TOWARDS A SMART LABELING STRATEGY

SUPERVISED LEARNING

 All data is labeled
* No. of annotations is predetermined
* No. of annotations is arbitrary
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ACTIVE LEARNING
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ACTIVE LEARNING SMART LABELING STRATEGY
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TOWARDS A SMART LABELING STRATEGY

Data Volume Reduction
Experiment

/ No. of Records
X \ MODEL

BUDGET \ ACCURACY
No. of Annotations

outgoing _, per Record

\06
\\! |

Labeling
Accuracy

1)

Labeling Pollution
Experiment



TOWARDS A SMART LABELING STRATEGY
Model Accuracy vs. Total Cost
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Model Accuracy vs. Total Cost
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Model Accuracy vs. Total Cost
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TOWARDS A SMART LABELING STRATEGY
Model Accuracy vs. Total Cost
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TOWARDS A SMART LABELING STRATEGY

NOT COVERED IN THIS TALK:

Sensitivity by cluster (instead of class)
Combining data usefulness with difficulty to label

Combining with AL: “non-binary” Active Learning



CONCLUSIONS

Class sensitivity is inerrant to the data
* Not dll data requires as much labeling care
 Better models can’t solve everything...

”"Compensating” for bad labels
* Is more or less difficult depending on the class
*  Might not be possible as dll

Smarter labeling strategies are needed

 Saving $$ on labeling doesn’t necessarily imply labeling less data

* Local optimization is coming (record level labeling recommendations)
* Bring the area of non-binary Active Learning



Smart Data > Big Data
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